...
首页> 外文期刊>Journal of Biophotonics >Reliability of wavefront shaping based on coherent optical adaptive technique in deep tissue focusing
【24h】

Reliability of wavefront shaping based on coherent optical adaptive technique in deep tissue focusing

机译:基于相干光学自适应技术在深组织聚焦中的波前整形的可靠性

获取原文
获取原文并翻译 | 示例
           

摘要

Wavefront shaping can compensate the wavefront distortions in deep tissue focusing, leading to an improved penetration depth. However, when using the backscattered signals as the feedback, unexpected compensation bias may be introduced, resulting in focusing position deviations or even no focus in the illumination focal plane. Here we investigated the reliability of wavefront shaping based on coherent optical adaptive technique in deep tissue focusing by measuring the position deviations between the foci in the illumination focal plane and the epi-detection plane. The experimental results show that when the penetration depth reaches 150 mu m in mouse brain tissue (with scattering coefficient 22.42mm(-1)) using a 488nm laser and an objective lens with 0.75 numerical aperture, the center of the real focus will deviate out of one radius range of the Airy disk while the optimized focus in the epi-detection plane maintained basically at the center. With the penetration depth increases, the peak to background ratio of the focus in the illumination focal plane decreases faster than that in the epi-detection plane. The results indicate that when the penetration depth reaches 150 mu m, feedback based on backscattered signals will make wavefront shaping lose its reliability, which may provide a guidance for applications of non-invasive precise optogenetics or deep tissue optical stimulation using wavefront shaping methods. A, Intensity distribution in the epi-detection plane and the illumination focal plane before and after correction, corresponding to brain sections with 250 and 300 mu m thickness, respectively. Scale bar is 2 mu m. B, Averaged focusing deviations in the epi-detection plane (optimized) and the illumination focal plane (monitored) after compensation. The unit of the ordinate is one Airy disk diameter. Black dashed line represents one Airy disk radius. Bars represent the SE of each measurement set.
机译:波前塑形可以补偿深层组织聚焦中的波前扭曲,导致改进的穿透深度。然而,当使用反向散射信号作为反馈时,可以引入意外的补偿偏差,导致聚焦位置偏差或甚至没有焦点在照明焦平面中。在这里,我们通过测量照明焦平面和外延检测平面中的焦点之间的位置偏差来研究基于深组织聚焦的相干光学自适应技术的波前整形的可靠性。实验结果表明,当渗透深度在小鼠脑组织中达到150μm时(散射系数22.42mm(-1))使用488nm激光和具有0.75个数字孔径的物镜,实际焦点的中心将偏离通风盘的一个半径范围,而在EPI检测平面上的优化聚焦基本上保持在中心。通过穿透深度增加,照明焦平面中的焦点的峰值与ePI检测平面中的焦点的背景比率降低。结果表明,当穿透深度达到150μm时,基于反向散射信号的反馈将使波前塑化失去其可靠性,这可以使用波前整形方法提供非侵入性精确光学或深组织光学刺激的应用的指导。在校正之前和之后的EPI检测平面和照明焦平面中的强度分布,分别对应于具有250和300μm厚度的脑切片。秤杆是2亩。 B,在补偿后,平均在EPI检测平面(优化)和照明焦平面(监测)中的聚焦偏差。纵坐标的单位是一个通风盘直径。黑色虚线表示一个通风盘半径。条表示每个测量集的SE。

著录项

  • 来源
    《Journal of Biophotonics》 |2020年第1期|共8页
  • 作者单位

    Zhejiang Univ Dept Neurobiol State Key Lab Modern Opt Instrumentat Sch Med Affiliated Hosp 1 Hangzhou 310027 Zhejiang Peoples R China;

    Zhejiang Univ Coll Opt Sci &

    Engn Hangzhou Zhejiang Peoples R China;

    Zhejiang Univ Ctr Neurosci Dept Neurobiol NHC &

    CAMS Key Lab Med Neurobiol Sch Med Hangzhou 310058 Zhejiang Peoples R China;

    Zhejiang Univ Ctr Neurosci Dept Neurobiol NHC &

    CAMS Key Lab Med Neurobiol Sch Med Hangzhou 310058 Zhejiang Peoples R China;

    Zhejiang Univ Dept Neurobiol State Key Lab Modern Opt Instrumentat Sch Med Affiliated Hosp 1 Hangzhou 310027 Zhejiang Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;
  • 关键词

    deep tissue focusing; optogenetics; penetration depth; wavefront shaping;

    机译:深组织聚焦;光学学;穿透深度;波前塑造;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号