...
首页> 外文期刊>Journal of cardiovascular electrophysiology >Electrophysiological mapping of embryonic mouse hearts: Mechanisms for developmental pacemaker switch and internodal conduction pathway
【24h】

Electrophysiological mapping of embryonic mouse hearts: Mechanisms for developmental pacemaker switch and internodal conduction pathway

机译:胚胎小鼠心脏的电生理学映射:发育起搏器开关和髁间传导通路的机制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Introduction: Understanding sinoatrial node (SAN) development could help in developing therapies for SAN dysfunction. However, electrophysiological investigation of SAN development remains difficult because mutant mice with SAN dysfunctions are frequently embryonically lethal. Most research on SAN development is therefore limited to immunocytochemical observations without comparable functional studies. Methods and Results: We applied a multielectrode array (MEA) recording system to study SAN development in mouse hearts acutely isolated at embryonic ages (E) 8.5-12.5 days. Physiological heart rates were routinely restored, enabling accurate functional assessment of SAN development. We found that dominant pacemaking activity originated from the left inflow tract (LIFT) region at E8.5, but switched to the right SAN by E12.5. Combining MEA recordings and pharmacological agents, we show that intracellular calcium (Ca 2+)-mediated automaticity develops early and is the major mechanism of pulse generation in the LIFT of E8.5 hearts. Later in development at E12.5, sarcolemmal ion channels develop in the SAN at a time when pacemaker channels are down-regulated in the LIFT, leading to a switch in the dominant pacemaker location. Additionally, low micromolar concentrations of tetrodotoxin (TTX), a sodium channel blocker, minimally affect pacemaker rhythm at E8.5-E12.5, but suppress atrial activation and reveal a TTX-resistant SAN-atrioventricular node (internodal) pathway that mediates internodal conduction in E12.5 hearts. Conclusions: Using a physiological mapping method, we demonstrate that differential mechanistic development of automaticity between the left and right inflow tract regions confers the pacemaker location switch. Moreover, a TTX-resistant pathway mediates preferential internodal conduction in E12.5 mouse hearts.
机译:简介:了解Sinoatrial Node(SAN)开发可以帮助开发SAN功能障碍的疗法。然而,SAN开发的电生理调查仍然很困难,因为突变小鼠与SAN功能障碍经常胚胎致命。因此,大多数关于SAN开发的研究都仅限于免疫细胞化学观察,而无需相当的功能研究。方法和结果:我们应用了多电极阵列(MEA)记录系统,研究在胚胎症(e)8.5-12.5天的小鼠心中急性分离的小鼠心中的SAN发育。生理心率均经常恢复,使SAN开发的准确功能评估。我们发现,在E8.5的左流入道(电梯)区域起源于左侧流入的起搏活性,但通过E12.5切换到右侧的SAN。结合MEA记录和药理剂,我们表明,细胞内钙(CA 2 +)介导的自动性早期发展,是脉冲产生在E8.5心中的主要机制。后来在E12.5的开发中,莎莱科姆马尔离子通道在SAN中在起搏器通道下调在电梯中,导致主导的起搏器位置的开关。另外,低毒素(TTX),钠通道阻断剂的低微摩尔浓度最小地影响了E8.5-E12.5的起搏器节律,但抑制了心房活化并显示了介导的TTX抗性的SAN-Atrioventriculary节点(InternoDal)途径在E12.5心中传导。结论:使用生理学映射方法,我们证明左右流入道之间自动化的差动机制发展赋予了起搏器定位开关。此外,TTX抗性途径在E12.5小鼠心中介导优先的氏族传导。

著录项

  • 来源
  • 作者单位

    Center for Neuroscience Aging and Stem Cell Research Sanford-Burnham Medical Research Institute;

    Center for Neuroscience Aging and Stem Cell Research Sanford-Burnham Medical Research Institute;

    Center for Neuroscience Aging and Stem Cell Research Sanford-Burnham Medical Research Institute;

    Center for Neuroscience Aging and Stem Cell Research Sanford-Burnham Medical Research Institute;

    Center for Neuroscience Aging and Stem Cell Research Sanford-Burnham Medical Research Institute;

    Center for Neuroscience Aging and Stem Cell Research Sanford-Burnham Medical Research Institute;

    Center for Neuroscience Aging and Stem Cell Research Sanford-Burnham Medical Research Institute;

    Modeling and Simulation Novartis Pharma AG Basel Switzerland;

    Faculty of Kinesiology University of Calgary Canada;

    QUASAR Inc. San Diego CA United States;

    Center for Neuroscience Aging and Stem Cell Research Sanford-Burnham Medical Research Institute;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 人体生理学;
  • 关键词

    conduction system; electrophysiology mapping; internodal pathway; intracellular calcium; ion channel; sinoatrial node;

    机译:传导系统;电生理学映射;局部途径;细胞内钙;离子通道;窦房;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号