首页> 外文期刊>AIChE Journal >Rapid Lightoff of Syngas Production from Methane:A Transient Product Analysis
【24h】

Rapid Lightoff of Syngas Production from Methane:A Transient Product Analysis

机译:快速起燃甲烷合成气的瞬态产物分析

获取原文
获取原文并翻译 | 示例
           

摘要

Steady-state production of syngas (CO and H_2) can be attained within 10 s from room-temperature mixtures of methane and air fed to a short-contact-time reactor by initially operating at combustion stoichiometry (CH_4O_2 = 0.5) and then quickly switching to syngas stoichiometry (CH_4/O_2 = 2.0).The methane/air mixture is first ignited,forming a premixed flame upstream of the catalyst that heats the Rh-impregnated alpha-alu-mina foam monolith to catalytic lightoff (T > 500 deg C) in a few seconds.The methane/ oxygen ratio is then increased to partial oxidation stoichiometry,which extinguishes the flame and effects immediate autothermal syngas production.Transient species profiles are measured with a rapid-response mass spectrometer (response time constant = 0.5 s),and catalyst temperature is measured with a thermocouple at the catalyst back face.Because the monolith thermal response time (~ 1 s) is several orders of magnitude larger than the reaction timescales (~ 10~(-12) to 10~(-3) s),chemistry and flow should be mathematically decoupled from local transient variations in catalyst temperature.Using this assumption,a transient temperature profile is combined with detailed surface chemistry for methane on Rh in a numerical plug-flow model.This approach accurately reproduces the transient species profiles measured during experimental lightoff for short combustion time experiments and lends insight into how the monolith temperature develops with time.The combined experimental and numerical efforts supply useful information on the transient reactor behavior for various combustion times and identify a combustion time to avoid undershoot or overshoot in catalyst temperature and minimize start-up time.
机译:通过首先以燃烧化学计量比(CH_4O_2 = 0.5)运行,然后快速切换,可以在短时间内接触甲烷和空气的室温混合物中,在10 s内实现稳态生成合成气(CO和H_2)到合成气化学计量(CH_4 / O_2 = 2.0)。首先点燃甲烷/空气混合物,在催化剂上游形成预混火焰,将Rh浸渍的α-铝-纳米泡沫整料加热到催化起燃温度(T> 500℃然后在几秒钟内将甲烷/氧气的比例增加到部分氧化化学计量,从而熄灭火焰并立即产生自热合成气。使用快速响应质谱仪(响应时间常数= 0.5 s)测量瞬态物种分布,然后用热电偶在催化剂背面测量催化剂温度。因为整料的热响应时间(〜1 s)比反应时间范围(〜10〜(-12)到10〜(-3)大几个数量级)) ,化学和流量应与催化剂温度的局部瞬态变化在数学上解耦。使用此假设,在数值推流模型中,将瞬态温度曲线与Rh上甲烷的详细表面化学性质相结合。此方法可精确地再现瞬态物种曲线在较短的燃烧时间实验的起燃期间进行测量,有助于洞悉整体温度如何随时间变化。结合实验和数值工作,可提供有关各种燃烧时间的瞬态反应堆行为的有用信息,并确定燃烧时间以避免在燃烧过程中出现过冲或过冲。催化剂温度并最小化启动时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号