...
首页> 外文期刊>Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research >Inhibition of the Oxygen Sensor PHD2 Enhances Tissue-Engineered Endochondral Bone Formation
【24h】

Inhibition of the Oxygen Sensor PHD2 Enhances Tissue-Engineered Endochondral Bone Formation

机译:抑制氧气传感器PHD2增强组织工程的内骨骨形成

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Tissue engineering holds great promise for bone regenerative medicine, but clinical translation remains challenging. An important factor is the low cell survival after implantation, primarily caused by the lack of functional vasculature at the bone defect. Interestingly, bone development and repair initiate predominantly via an avascular cartilage template, indicating that chondrocytes are adapted to limited vascularization. Given these advantageous properties of chondrocytes, we questioned whether tissue-engineered cartilage intermediates implanted ectopically in mice are able to form bone, even when the volume size increases. Here, we show that endochondral ossification proceeds efficiently when implant size is limited (= 30 mm(3)), but chondrogenesis and matrix synthesis are impaired in the center of larger implants, leading to a fibrotic core. Increasing the level of angiogenic growth factors does not improve this outcome, because this strategy enhances peripheral bone formation, but disrupts the conversion of cartilage into bone in the center, resulting in a fibrotic core, even in small implants. On the other hand, activation of hypoxia signaling in cells before implantation stimulates chondrogenesis and matrix production, which culminates in enhanced bone formation throughout the entire implant. Together, our results show that induction of angiogenesis alone may lead to adverse effects during endochondral bone repair, whereas activation of hypoxia signaling represents a superior therapeutic strategy to improve endochondral bone regeneration in large tissue-engineered implants. (c) 2018 American Society for Bone and Mineral Research.
机译:组织工程对骨再生医学具有很大的承担,但临床翻译仍然具有挑战性。一个重要因素是植入后的低细胞存活率,主要是由于骨缺损缺乏功能性脉管系统。有趣的是,骨骼发育和修复主要通过缺血软骨模板发起,表明软骨细胞适应有限的血管化。鉴于软骨细胞的这些有利的性质,我们质疑是否能够在小鼠中植入的组织工程化软骨中间体能够形成骨,即使体积尺寸增加。在这里,我们表明,当植入物尺寸有限时,内心骨化有效地进行(& = 30mm(3)),但在较大植入物的中心损害了软骨发生和基质合成,导致纤维化核心。增加血管生成生长因子的水平并未改善这种结果,因为该策略增强了外周骨形成,但破坏了软骨转化为中心的骨骼,导致纤维化核心,即使在小植入物中。另一方面,在植入前催眠细胞中的缺氧信号刺激软骨发生和基质产生,其在整个植入物中增强骨形成。我们的结果表明,单独的血管生成诱导可能导致内胆骨修复期间的不利影响,而缺氧信号传导的激活是一种优越的治疗策略,以改善大型组织工程植入物中的内胆骨再生。 (c)2018年美国骨骼和矿物学学会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号