...
首页> 外文期刊>Journal of Biomechanics >Anterior laxity, lateral tibial slope, and in situ ACL force differentiate knees exhibiting distinct patterns of motion during a pivoting event: A human cadaveric study
【24h】

Anterior laxity, lateral tibial slope, and in situ ACL force differentiate knees exhibiting distinct patterns of motion during a pivoting event: A human cadaveric study

机译:前松弛,侧胫斜率,以及原位ACL力区分膝盖在枢转事件期间表现出不同的运动模式:人类尸体研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Knee instability following anterior cruciate ligament (ACL) rupture compromises function and increases risk of injury to the cartilage and menisci. To understand the biomechanical function of the ACL, previous studies have primarily reported the net change in tibial position in response to multiplanar torques, which generate knee instability. In contrast, we retrospectively analyzed a cohort of 13 consecutively tested cadaveric knees and found distinct motion patterns, defined as the motion of the tibia as it translates and rotates from its unloaded, initial position to its loaded, final position. Specifically, ACL-sectioned knees either subluxated anteriorly under valgus torque (VL-subluxating) (5 knees) or under a combination of valgus and internal rotational torques (VL/IR-subluxating) (8 knees), which were applied at 15 and 30 degrees flexion using a robotic manipulator. The purpose of this study was to identify differences between these knees that could be driving the two distinct motion patterns. Therefore, we asked whether parameters of bony geometry and tibiofemoral laxity (known risk factors of non-contact ACL injury) as well as in situ ACL force, when it was intact, differentiate knees in these two groups. VL-subluxating knees exhibited greater sagittal slope of the lateral tibia by 3.6 +/- 2.4 degrees (p = 0.003); less change in anterior laxity after ACL-sectioning during a simulated Lachman test by 3.2 +/- 3.2 mm (p = 0.006); and, at the peak applied valgus torque (no internal rotation torque), higher posteriorly directed, in situ ACL force by 13.4 +/- 11.3 N and 12.0 +/- 11.6 N at 15 degrees and 30 degrees of flexion, respectively (both p = 0.03). These results may suggest that subgroups of knees depend more on their ACL to control lateral tibial subluxation in response to uniplanar valgus and multiplanar valgus and internal rotation torques as mediated by anterior laxity and bony morphology. (C) 2018 Elsevier Ltd. All rights reserved.
机译:膝关节不稳定后,前十字条韧带(ACL)破裂损害功能,增加了软骨和半月形的伤害风险。为了了解ACL的生物力学功能,之前的研究主要报告了胫骨扭矩的胫骨位置的净变化,从而产生膝关节不稳定。相比之下,我们回顾性地分析了13个连续测试的尸体膝盖,并且发现了不同的运动模式,定义为胫骨的运动,因为它从其卸载,初始位置转换到其加载的最终位置。具体地,ACL-切片膝盖在旋流扭矩(VL-延伸)(5膝)下方或在旋流和内部旋转扭矩(VL / IR-SUBLUXATING)(8个膝部)的组合下,其在15和30处施用使用机器人操纵器屈曲。本研究的目的是识别这些膝盖之间的差异,这些膝关节可以驱动两个不同的运动模式。因此,我们询问骨骼几何和胫骨的参数是否(非接触ACL损伤的已知风险因素)以及原位ACL力,当它完整时,在这两组中区分膝盖。 VL-Subluxating膝盖在3.6 +/- 2.4度下显示出胫骨的更大的矢状斜率(P = 0.003);在模拟的Lachman测试期间通过3.2 +/- 3.2mm(p = 0.006),在模拟的Lachman试验期间较少的泻液变化较小;并且,在峰值施加的旋流扭矩(无内部旋转扭矩),在15度和30度屈曲(均为P & = 0.03)。这些结果可能表明,膝盖的子组更依赖于它们的ACL,以控制横向胫骨Subluxation响应于Uniplanar Valgus和Multiplanar止骨和内部旋转扭矩,如前泻液和骨形态介导的。 (c)2018年elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号