...
首页> 外文期刊>Journal of Biomechanics >Simplified boundary conditions alter cortical-trabecular load sharing at the distal radius; A multiscale finite element analysis
【24h】

Simplified boundary conditions alter cortical-trabecular load sharing at the distal radius; A multiscale finite element analysis

机译:简化的边界条件改变了远端半径的皮质小梁载荷; 多尺度有限元分析

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract High-resolution peripheral quantitative computed tomography (HR-pQCT) derived micro-finite element (FE) modeling is used to evaluate mechanical behavior at the distal radius microstructure. However, these analyses typically simulate non-physiologic simplified platen-compression boundary conditions on a small section of the distal radius. Cortical and trabecular regions contribute uniquely to distal radius mechanical behavior, and various factors affect these regions distinctly. Generalized strength predictions from standardized platen-compression analyses may not adequately capture region specific responses in bone. Our goal was to compare load sharing within the cortical-trabecular compartments between the standardized platen-compression BC simulations, and physiologic BC simulations using a validated multiscale approach. Clinical- and high-resolution images were acquired from nine cadaveric forearm specimens using an HR-pQCT scanner. Multiscale FE models simulating physiologic BCs, and micro-FE only models simulating platen-compression BCs were created for each specimen. Cortical and trabecular loads (N) along the length of the distal radius micro-FE section were compared between BCs using correlations. Principal strain distributions were also compared quantitatively. Cortical and trabecular loads from the platen-compression BC simulations were strongly correlated to the physiologic BC simulations. However, a 30% difference in cortical loads distally, and a 53% difference in trabecular loads proximally was observed under platen BC simulations. Also, distribution of principal strains was clearly different. Our data indicated that platen-compression BC simulations alter cortical-trabecular load sharing. Therefore, results from these analyses should be interpreted in the appropriate mechanical context for clinical evaluations of normal and pathologic mechanical behavior at the distal radius.
机译:摘要使用高分辨率外围定量计算断层扫描(HR-PQCT)衍生的微型有限元(FE)建模用于评估远端半径微结构处的机械行为。然而,这些分析通常在远端半径的小部分上模拟非生理学简化的压缩边界条件。皮质和短边缘区域唯一地贡献远端半径的力学行为,各种因素明显影响这些区域。标准化压纸 - 压缩分析的广义强度预测可能无法充分捕获骨中的区域特异性反应。我们的目标是使用经过验证的多尺度方法比较标准化的压板压缩BC模拟和生理BC模拟之间的皮质小梁舱内的负荷共享。使用HR-PQCT扫描仪从九个尸体前臂标本中获得临床和高分辨率图像。模拟生理BCS的多尺度FE模型,以及模拟压缩BCS的微FE模型是针对每个样本产生的。使用相关性比较BCS之间的沿远端半径微段的长度的皮质和小梁载荷(n)。也定量比较了主应变分布。来自压纸 - 压缩BC模拟的皮质和小梁载荷与生理BC模拟强烈相关。然而,在压板BC模拟下观察到近侧的皮质载荷的30%的皮质载荷差异,并且在近侧观察到近侧的小梁载荷差异。而且,主要菌株的分布显然是不同的。我们的数据表明,压缩BC仿真改变了皮质小梁载荷共享。因此,这些分析的结果应在适当的机械背景下解释,用于在远端半径处对正常和病理机械行为的临床评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号