首页> 外文期刊>Journal of biomechanical engineering. >Ex Vivo Mechanical Tests and Multiscale Computational Modeling Highlight the Importance of Intramural Shear Stress in Ascending Thoracic Aortic Aneurysms
【24h】

Ex Vivo Mechanical Tests and Multiscale Computational Modeling Highlight the Importance of Intramural Shear Stress in Ascending Thoracic Aortic Aneurysms

机译:exvivo机械测试和多尺度计算建模突出了intramury剪切应力在升胸主动脉瘤中的重要性

获取原文
获取原文并翻译 | 示例
           

摘要

Ascending thoracic aortic aneurysms (ATAAs) are anatomically complex in terms of architecture and geometry, and both complexities contribute to unpredictability of ATAA dissection and rupture in vivo. The goal of this work was to examine the mechanism of ATAA failure using a combination of detailed mechanical tests on human tissue and a multiscale computational model. We used (1) multiple, geometrically diverse, mechanical tests to characterize tissue properties; (2) a multiscale computational model to translate those results into a broadly usable form; and (3) a model-based computer simulation of the response of an ATAA to the stresses generated by the blood pressure. Mechanical tests were performed in uniaxial extension, biaxial extension, shear lap, and peel geometries. ATAA tissue was strongest in circumferential extension and weakest in shear, presumably because of the collagen and elastin in the arterial lamellae. A multiscale, fiber-based model using different fiber properties for collagen, elastin, and interlamellar connections was specified to match all of the experimental data with one parameter set. Finally, this model was used to simulate ATAA inflation using a realistic geometry. The predicted tissue failure occurred in regions of high stress, as expected; initial failure events involved almost entirely interlamellar connections, consistent with arterial dissection-the elastic lamellae remain intact, but the connections between them fail. The failure of the interlamellar connections, paired with the weakness of the tissue under shear loading, is suggestive that shear stress within the tissue may contribute to ATAA dissection.
机译:升胸主动脉瘤(ATAAs)在架构和几何形状方面是一种解剖学复杂,并且两种复杂性都有助于ATAA剖析和体内破裂的不可预测性。这项工作的目标是使用人体组织和多尺度计算模型的详细机械测试的组合来检查ATAA失效的机制。我们使用(1)多重,几何不同的机械测试,以表征组织特性; (2)多尺度计算模型将这些结果转化为广泛可用的形式; (3)基于模型的计算机模拟ATAA对受血压产生的应力的响应。在单轴延伸,双轴延伸,剪切圈和剥离几何形状中进行机械测试。 ATAA组织在圆周延伸和剪切中最弱,可能是因为动脉薄片中的胶原蛋白和弹性蛋白。使用不同光纤属性的多尺度,基于光纤的模型用于胶原蛋白,弹性蛋白和层间连接,以将所有参数集的所有实验数据匹配。最后,该模型用于使用现实几何模拟ATAA通胀。预期的高应力区域发生预测的组织失败;初始失败事件涉及几乎完全的层间连接,与动脉分布 - 弹性薄片保持完整,但它们之间的连接失败。与剪切负载下的组织的弱点配对的层间连接的失败是暗示组织内的剪切应力可能有助于ATAA分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号