首页> 外文期刊>Journal of Applied Mechanics: Transactions of the ASME >A Numerical Study on Ductile Failure of Porous Ductile Solids With Rate-Dependent Matrix Behavior
【24h】

A Numerical Study on Ductile Failure of Porous Ductile Solids With Rate-Dependent Matrix Behavior

机译:依赖于速率矩阵行为的多孔延性固体延性失效的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

This work examines the effects of loading rate on the plastic flow and ductile failure of porous solids exhibiting rate-dependent behavior relevant to many structural metals. Two different modeling approaches for ductile failure are employed and numerical analyses are performed over a wide range of strain rates. Finite element unit cell simulations are carried out to evaluate the macroscopic mechanical response and ductile failure by void coalescence for various macroscopic strain rates. The unit cell results are then used to assess the accuracy of a rate-dependent porous plasticity model, which is subsequently used in strain localization analyses based on the imperfection band approach. Strain localization analyses are conducted for (i) proportional loading paths and (ii) non-proportional loading paths obtained from finite element simulations of axisymmetric and flat tensile specimens. The effects of strain rate are most apparent on the stress-strain response, whereas the effects of strain rate on ductile failure is found to be small for the adopted ratedependent constitutive model. However, the rate-dependent constitutive formulation tends to regularize the plastic strain field when the strain rate increases. In the unit cell simulations, this slightly increases the strain at coalescence with increasing strain rate compared to a rate-independent constitutive formulation. When the strain rate is sufficiently high, the strain at coalescence becomes constant. The strain localization analyses show a negligible effect of strain rate under proportional loading, while the effect of strain rate is more pronounced when non-proportional loading paths are assigned.
机译:这项工作探讨了载荷对多孔固体塑料流动和延展性失效的影响,该塑料流动呈现与许多结构金属相关的速率依赖性行为。采用两种不同的延展性造型方法,并在广泛的应变速率下进行数值分析。有限元单元电池模拟进行以评估各种宏观应变率的空隙聚结的宏观机械响应和延展性故障。然后使用单元电池结果来评估速率依赖性多孔塑性模型的准确性,其随后基于缺陷频带方法在应变定位分析中使用。对(i)比例的负载路径和(ii)从轴对称和扁平拉伸试样的有限元模拟获得的非比例负载分析进行应变定位分析。应变率的影响最明显在应力 - 应变响应上,而应变率对延性失效的影响对于采用的依赖性本构模型较小。然而,当应变速率增加时,速率依赖性本构体形式配方倾向于规则化塑性应变场。在单元电池模拟中,与速率无关的本构制品相比,这种略微增加了应变速率随着应变速率的增加而增加。当应变率足够高时,聚结的菌株变得恒定。应变定位分析显示出在比例加载下的应变率效果可忽略不计,而当分配非比例负载路径时,应变速率的效果更加明显。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号