首页> 外文期刊>Journal of Aeronautics, Astronautics and Aviation, A >Investigation of Temperature-Dependence of Zeta Potential Using Molecular Dynamics Simulation of Nanoscale Electroosmotic Flows
【24h】

Investigation of Temperature-Dependence of Zeta Potential Using Molecular Dynamics Simulation of Nanoscale Electroosmotic Flows

机译:利用纳米电渗流的分子动力学模拟研究Zeta电位温度依赖性的研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The objective of the present work is to investigate temperature-dependence of zeta potential in nanoscale electroosmotic flows (EOF). Molecular dynamics (MD) simulations for EOF is performed with a W-molecule used as an approximate model for water. To explore the influences of the particle mass, various electrolytes such as a fictitious model W{sub}±, the commonly used KCl and NaCl. At various temperature of the solid-fluid system, the present molecular dynamics (MD) results demonstrated that the conventional Smoluchowski equation is still valid in nanoscale electroosmotic flow but the temperature-dependence of the critical parameters such as electric permittivity and fluid viscosity have to be considered. At condition of low ion concentration, the electric double layer is thick and Smoluchowski equation is not appropriate. Physical mechanisms are explored in either viewpoint of EOF velocity or ions concentration. The present MD results demonstrate that (1) high bulk ion concentration leads to a decrease in zeta potential; (2) the sign of wall charge affects conterion concentration but the magnitude of zeta potential is little influenced; (3) high wall density enhances fluid slippage and in turn results in high fluid velocity and zeta potential; and (4) particle size has influences on the magnitude of zeta potential.
机译:本作研究的目的是研究Zeta电位在纳米级电渗流(EOF)中的温度依赖性。用用作水的近似模型的W分子进行EOF的分子动力学(MD)模拟。为了探讨颗粒物质的影响,各种电解质,例如虚拟模型W {sub}±,常用的KCl和NaCl。在固体流体系统的各种温度下,目前的分子动力学(MD)结果表明,传统的Smoluchowski方程仍然在纳米级电渗流中有效,但临界参数如电介收和流体粘度的温度依赖性必须是经过考虑的。在低离子浓度的条件下,电双层是厚的,Smoluchowski方程不合适。在EOF速度或离子浓度的任一观点鉴定了物理机制。本MD结果表明(1)高批量离子浓度导致Zeta电位的降低; (2)墙壁电荷的迹象影响孔雀浓度,但Zeta电位的幅度很小; (3)高壁密度增强流体滑动,又导致高流体速度和Zeta电位; (4)粒度对Zeta电位的大小有影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号