...
首页> 外文期刊>Diamond and Related Materials >Solid-state supercapacitor cell based on 3D nanostructured MnO2/CNT microelectrode array on graphite and H3PO4/PVA electrolyte
【24h】

Solid-state supercapacitor cell based on 3D nanostructured MnO2/CNT microelectrode array on graphite and H3PO4/PVA electrolyte

机译:基于3D纳米结构MnO2 / CNT微电极阵列石墨和H3PO4 / PVA电解质的固态超级电容器

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Rapid development of portable consumer electronics has promoted the need for lightweight, flexible, environmentally friendly, high safety, and highly efficient energy storage technology. Herein, we present the fabrication and characterization of three dimensional (3D) nanostructured supercapacitor microelectrode arrays using manganese dioxide and carbon nanotubes (MnO2/CNTs) on graphite foil substrate and polyvinyl alcohol (PVA)/phosphoric acid (H3PO4) solid polymer electrolyte for integration into a solid-state supercapacitor cell, without any additives or binders. A low-cost, hot filament chemical vapor deposition (HFCVD) process was used to synthesize vertically aligned 3D CNT microelectrode arrays, which act as the current conductors, directly on a flexible, conducting graphitefoil current collector. Thin-film MnO2 deposition on the CNTs was achieved by an electrochemical technique using in-situ reduction of MMnO4, without any supporting electrolyte, which provides excellent bonding between the two for enhanced stability. Electrochemical characterization in aqueous electrolyte (KCI) yielded capacitance of 721 mF or 858 F.g(-1) at I mV.s(-1) scan rate. After assembling the solid-state supercapacitor cell, we obtained nearly 1.4 F or 830 F.g(-1) at 1 mV.s(-1) in a symmetric configuration. Maximum specific power value of 73.9 kW.kg(-1) land a maximum specific energy of 1152 Wh.kg(-1) was achieved. The solid-state device exhibits excellent cycling stability with a capacitance loss of only 11% after 3000 cycles. Detailed fabrication and characterization results have been presented. (C) 2017 Elsevier B.V. All rights reserved.
机译:便携式消费电子产品的快速发展促进了重量轻,灵活,环保,高安全性和高效储能技术的需求。在此,我们在石墨箔基板和聚乙烯醇(PVA)/磷酸(H3PO4)固体聚合物电解质中使用二氧化锰和碳纳米管(MNO2 / CNT)的三维(3D)纳米结构超级电容器微电极阵列的制造和表征进入固态超级电容器细胞,没有任何添加剂或粘合剂。使用低成本的热灯丝化学气相沉积(HFCVD)工艺来合成垂直对准的3D CNT微电极阵列,其用作电流导体,直接在柔性导电石墨箔集电器上。通过使用原位减少MMNO4的电化学技术实现CNT上的薄膜MnO2沉积,而无需任何支撑电解质,其在两者之间提供优异的粘合以增强稳定性。在水电解质(KCI)中的电化学表征在I MV.S(-1)扫描速率下产生721mF或858℉(-1)的电容。在组装固态超级电容器单元之后,在对称配置中,我们在1mV.S(-1)处获得近1.4f或830 f.g(-1)。最大特定功率值为73.9 kW.kg(-1)土地的最大特定能量为1152WH.kg(-1)。固态装置具有优异的循环稳定性,电容损耗仅为3000次循环后的11%。已经提出了详细的制造和表征结果。 (c)2017 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号