...
首页> 外文期刊>Hydrology and Earth System Sciences >Laser vision: lidar as a transformative tool to advance critical zone science
【24h】

Laser vision: lidar as a transformative tool to advance critical zone science

机译:激光愿景:LIDAR作为推进关键区科学的变形工具

获取原文
获取原文并翻译 | 示例
           

摘要

Observation and quantification of the Earth's surface is undergoing a revolutionary change due to the increased spatial resolution and extent afforded by light detection and ranging (lidar) technology. As a consequence, lidar-derived information has led to fundamental discoveries within the individual disciplines of geomorphology, hydrology, and ecology. These disciplines form the cornerstones of critical zone (CZ) science, where researchers study how interactions among the geosphere, hydrosphere, and biosphere shape and maintain the 'zone of life', which extends from the top of unweathered bedrock to the top of the vegetation canopy. Fundamental to CZ science is the development of transdisciplinary theories and tools that transcend disciplines and inform other's work, capture new levels of complexity, and create new intellectual outcomes and spaces. Researchers are just beginning to use lidar data sets to answer synergistic, transdisciplinary questions in CZ science, such as how CZ processes co-evolve over long timescales and interact over shorter timescales to create thresholds, shifts in states and fluxes of water, energy, and carbon. The objective of this review is to elucidate the transformative potential of lidar for CZ science to simultaneously allow for quantification of topographic, vegetative, and hydrological processes. A review of 147 peer-reviewed lidar studies highlights a lack of lidar applications for CZ studies as 38 % of the studies were focused in geomorphology, 18 % in hydrology, 32 % in ecology, and the remaining 12 % had an interdisciplinary focus. A handful of exemplar transdisciplinary studies demonstrate lidar data sets that are well-integrated with other observations can lead to fundamental advances in CZ science, such as identification of feedbacks between hydrological and ecological processes over hillslope scales and the synergistic co-evolution of landscape-scale CZ structure due to interactions amongst carbon, energy, and water cycles. We propose that using lidar to its full potential will require numerous advances, including new and more powerful open-source processing tools, exploiting new lidar acquisition technologies, and improved integration with physically based models and complementary in situ and remote-sensing observations. We provide a 5-year vision that advocates for the expanded use of lidar data sets and highlights subsequent potential to advance the state of CZ science.
机译:由于光检测和测距(LIDAR)技术提供了增加的空间分辨率和范围,地球表面的观察和定量正在进行革命性的变化。因此,激光雷达衍生的信息导致了地貌,水文和生态学的个体学科内的基本发现。这些学科形成了关键区(CZ)科学的基石,研究人员研究了地理学,水圈和生物圈形状之间的相互作用以及维持了“生命区”,它从未曝气的基岩顶部延伸到植被的顶部树冠。 CZ Science的基础是发展跨学科理论和工具,以超越纪律,告知其他工作,捕获新的复杂程度,创造新的智力成果和空间。研究人员刚刚开始使用LIDAR数据集来回答CZ Science中的协同性,跨学科问题,例如CZ过程如何在长时间尺度上交流并相互作用,以创造阈值,在水,能量和水的助能方面转变碳。本综述的目的是阐明CZ Science的LIDAR的转化性潜力,同时允许定量地形,营养和水文过程。审查147个同行评审的激光雷达研究突出了CZ研究的缺乏LIDAR应用,因为38%的研究占地貌性,18%在水文中,生态学32%,其余12%的跨学科焦点。少数示例性的跨学科研究表明了与其他观测良好的LIDAR数据集可以导致CZ科学的基本进步,例如山坡尺度的水文和生态过程之间的反馈以及景观级协同共同演变的反馈CZ结构由于碳,能量和水循环之间的相互作用。我们建议使用LIDAR全面潜力将需要大量进展,包括新的和更强大的开源处理工具,利用新的激光雷达采集技术,以及与物理基础的模型的整合和原位互补和遥感观察。我们提供了一个5年的愿景,倡导利用LIDAR数据集的扩展使用,并突出了推进CZ科学状态的后续潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号