...
首页> 外文期刊>Hydrology and Earth System Sciences >Assessing the added value of the Intermediate Complexity Atmospheric Research (ICAR) model for precipitation in complex topography
【24h】

Assessing the added value of the Intermediate Complexity Atmospheric Research (ICAR) model for precipitation in complex topography

机译:评估中间复杂性大气研究(ICAR)模型的复杂地形降水的附加值

获取原文
获取原文并翻译 | 示例
           

摘要

The coarse grid spacing of global circulation models necessitates the application of downscaling techniques to investigate the local impact of a changing global climate. Difficulties arise for data-sparse regions in complex topography, as they are computationally demanding for dynamic downscaling and often not suitable for statistical downscaling due to the lack of high-quality observational data. The Intermediate Complexity Atmospheric Research (ICAR) model is a physics-based model that can be applied without relying on measurements for training and is computationally more efficient than dynamic downscaling models. This study presents the first in-depth evaluation of multiyear precipitation time series generated with ICAR on a 4 x 4 km(2) grid for the South Island of New Zealand for an 11-year period, ranging from 2007 to 2017. It focuses on complex topography and evaluates ICAR at 16 weather stations, 11 of which are situated in the Southern Alps between 700 and 2150 m m. s.1 (m m.s.1 refers to meters above mean sea level). ICAR is assessed with standard skill scores, and the effect of model top elevation, topography, season, atmospheric background state and synoptic weather patterns on these scores are investigated. The results show a strong dependence of ICAR skill on the choice of the model top elevation, with the highest scores obtained for 4 km above topography. Furthermore, ICAR is found to provide added value over its ERA-Interim reanalysis forcing data set for alpine weather stations, improving the median of mean squared errors (MSEs) by 30 % and up to 53 %. It performs similarly during all seasons with a MSE minimum during winter, while flow linearity and atmospheric stability are found to increase skill scores. ICAR scores are highest during weather patterns associated with flow perpen- dicular to the Southern Alps and lowest for flow parallel to the alpine range. While measured precipitation is underestimated by ICAR, these results show the skill of ICA
机译:全局循环模型的粗网间距需要应用较低的技术来研究变化的全球气候的局部影响。复杂地形中的数据稀疏区域出现困难,因为它们对动态缩小的计算要求,并且由于缺乏高质量的观测数据而往往不适合统计较低。中间复杂性大气研究(ICAR)模型是一种基于物理的模型,可以应用而不依赖于训练测量,并且比动态缩小模型计算更有效。本研究介绍了在新西兰南岛4×4km(2)电网的ICAR中,为新西兰南岛的4×4 km(2)架,从2007年到2017年,拍摄了第一个深入评价。它侧重于复杂的地形和评估了16个气象站的ICAR,其中11个位于700到2150米的南部阿尔卑斯山。 S.1(M M.1)指平均海平面上方的米)。 ICAR通过标准技能评分评估,并研究了模型顶级高度,地形,季节,大气背景状态和揭示天气模式的效果。结果表明,ICAR技能对模型顶级高度选择的强烈依赖,获得了以上4公里的地形获得的最高评分。此外,发现ICAR在其ERA临时再分析迫使数据集中为高山气象站提供了附加值,从而改善平均平方误差(MSES)的中值30%,高达53%。它在所有季节期间表现在冬季MSE最小的所有季节中,而流动线性和大气稳定性则会增加技能分数。在与南部阿尔卑斯州的南部的流量有关的天气模式下,ICAR分数是最高的,并且对于平行于高山范围的流量最低。虽然ICAR低估了测量的沉淀,但这些结果表明了ICA的技能

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号