首页> 外文期刊>Hydrology and Earth System Sciences >Assessing the influence of soil freeze-thaw cycles on catchment water storage-flux-age interactions using a tracer-aided ecohydrological model
【24h】

Assessing the influence of soil freeze-thaw cycles on catchment water storage-flux-age interactions using a tracer-aided ecohydrological model

机译:评估土壤冻融循环对流域水分储存助流年龄相互作用的影响,采用示踪辅助生态文化模型

获取原文
获取原文并翻译 | 示例
       

摘要

Ecohydrological models are powerful tools to quantify the effects that independent fluxes may have on catchment storage dynamics. Here, we adapted the tracer-aided ecohydrological model, EcH(2)O-iso, for cold regions with the explicit conceptualization of dynamic soil freeze-thaw processes. We tested the model at the data-rich Krycklan site in northern Sweden with multi-criterion calibration using discharge, stream isotopes and soil moisture in three nested catchments. We utilized the model's incorporation of ecohydrological partitioning to evaluate the effect of soil frost on evaporation and transpiration water ages, and thereby the age of source waters. The simulation of stream discharge, isotopes, and soil moisture variability captured the seasonal dynamics at all three stream sites and both soil sites, with notable reductions in discharge and soil moisture during the winter months due to the development of the frost front. Stream isotope simulations reproduced the response to the isotopically depleted pulse of spring snowmelt. The soil frost dynamics adequately captured the spatial differences in the freezing front throughout the winter period, despite no direct calibration of soil frost to measured soil temperature. The simulated soil frost indicated a maximum freeze depth of 0.25 m below forest vegetation. Water ages of evaporation and transpiration reflect the influence of snowmelt inputs, with a high proclivity of old water (pre-winter storage) at the beginning of the growing season and a mix of snowmelt and precipitation (young water) toward the end of the summer. Soil frost had an early season influence of the transpiration water ages, with water pre-dating the snowpack mainly sustaining vegetation at the start of the growing season. Given the long-term expected change in the energy balance of northern climates, the approach presented provides a framework for quantifying the interactions of ecohydrological fluxes and waters stored in the soil and understan
机译:生态水论模型是功能强大的工具,可以量化独立助熔剂可能对集距存储动态的影响。在这里,我们改编了探测器辅助生态水上模型,Zh(2)O-ISO,用于寒冷地区,具有动态土壤冻融过程的明确概念化。我们在瑞典北部的数据丰富的Krycklan站点测试了模型,使用了三个嵌套集水区的排放,流同位素和土壤水分进行了多标准校准。我们利用该模型掺入生态学分区,以评估土壤霜对蒸发和蒸腾水时代的影响,从而源水域的年龄。物流放电,同位素和土壤水分差异的模拟捕获了所有三个溪流场所和土壤场地的季节性动态,由于霜前面的开发,冬季几个月内的排放和土壤水分的显着减少。流同位素模拟再现对春季雪光的同位素耗尽脉冲的响应。尽管土壤霜冻直接校准了土壤温度,但土壤霜滑动力学充分捕获了整个冬季冻结前的空间差异。模拟的土壤霜,显示森林植被低0.25米的最大冻干深度。蒸发和蒸腾的水域反映了雪花投入的影响,在生长季节开始时,旧水(前冬季储存)的高度倾向,以及夏季结束的雪光和降水(年轻水)混合。土壤霜有恢复水域的初期影响,用水预先约会积雪主要在生长季节开始植被。鉴于北部气候能平衡的长期预期变化,提出的方法提供了一种用于量化储存在土壤和懂的生态水质助碱性的相互作用的框架

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号