...
首页> 外文期刊>Transactions of The Institution of Chemical Engineers. Process Safety and Environmental Protection, Part B >Comparison of k-epsilon models in gaseous release and dispersion simulations using the CFD code FLACS
【24h】

Comparison of k-epsilon models in gaseous release and dispersion simulations using the CFD code FLACS

机译:使用CFD码FLACS比较气体释放和色散模拟的K-Epsilon模型

获取原文
获取原文并翻译 | 示例
           

摘要

Several model validation studies on gas dispersion scenarios have been conducted in the past on the Reynolds averaged Navier Stokes (RANS) based eddy viscosity turbulence models. However, many of these studies are based on a limited number of validation cases involving simple geometries and conformal mesh. In the area of safety engineering, the application of RANS-based CFD for consequence analysis is a widely used methodology. Best practice on use of CFD in this context, as the document developed in the COST Action 732 (Franke et al., 2007), focus primarily on validation and verification aspects as well as simulation setup and definition of input data. Guidelines on turbulence models also exist, among which the ERCOFTAC CFD Best Practice Guidelines, and the works of Moloney et al. (2016) and Mcencle et al. (2001). However, there is no unique recommended model for dispersion simulations. The objective of the present study is to assess the three well-known RANS eddy viscosity models, namely, Standard k-epsilon, Re-Normalization group (RNG) k-epsilon and Realizable k-epsilon, in a representative range of gas dispersion cases by comparing models' behavior with experimental data. The current validation cases include dense CO2 release in a cross-wind, impinging hydrogen jet, and a dense chlorine jet release in an industrial site. All the simulations were conducted using the commercial CFD code FLACS. Turbulence models were assessed based on the ability to reproduce experimental concentrations, required computational-time and numerical-stability. Overall, Standard k-epsilon and RNG k-epsilon models were found to be reasonably good in all cases. Nevertheless, Realizable k-epsilon model shows promise in yielding good results in cases involving complex-geometries and dense-phase gas-releases. These results may also be explained with the interplay between the Porosity/Distributed Resistance subgrid models used in FLACS and turbulence models. (C) 2019 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
机译:在过去的reynolds vier Stokes(RANS)涡旋粘度湍流模型中,过去对气体分散方案进行了几项模型验证研究。然而,许多研究基于涉及简单几何和共形网格的有限数量的验证案例。在安全工程领域,基于RAN的CFD用于后果分析是广泛使用的方法。在此上下文中使用CFD的最佳实践,作为成本动作732(Franke等,2007)中开发的文档,主要关注验证和验证方面以及仿真设置和输入数据的定义。关于湍流模型的指南也存在,其中ERCOFTAC CFD最佳实践指南以及Moloney等人的作品。 (2016)和Mcencle等人。 (2001)。但是,没有用于色散模拟的独特推荐模型。本研究的目的是评估三种众所周知的RANS涡粘度模型,即标准K-ε,再归一化群(RNG)K-EPSILON和可实现的K-EPSILON,在燃气分散情况的代表范围内通过将模型的行为与实验数据进行比较。目前的验证案例包括在横向风中的致密CO2释放,撞击氢气喷射,以及工业部位的致密氯喷射释放。使用商业CFD码FLAC进行所有模拟。基于再现实验浓度,所需的计算时间和数值稳定性的能力评估湍流模型。总体而言,在所有情况下,发现标准K-EPSILON和RNG K-EPSILON模型相当好。然而,可实现的K-EPSILON模型在涉及复杂几何和密集气瓶的情况下产生良好的效果。这些结果也可以用FLACS和湍流模型中使用的孔隙率/分布电阻亚耕地模型之间的相互作用来解释。 (c)2019化学工程师机构。 elsevier b.v出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号