首页> 外文期刊>Transactions of the ASABE >EVALUATION OF A HYBRID REFLECTANCE-BASED CROP COEFFICIENT AND ENERGY BALANCE EVAPOTRANSPIRATION MODEL FOR IRRIGATION MANAGEMENT
【24h】

EVALUATION OF A HYBRID REFLECTANCE-BASED CROP COEFFICIENT AND ENERGY BALANCE EVAPOTRANSPIRATION MODEL FOR IRRIGATION MANAGEMENT

机译:基于混合反射率的作物系数和能量平衡灌溉管理的蒸发模型的评价

获取原文
获取原文并翻译 | 示例
           

摘要

Accurate generation of spatial soil water maps is useful for many types of irrigation management. A hybrid remote sensing evapotranspiration (ET) model combining reflectance-based basal crop coefficients (K-cbrf) and a two-source energy balance (TSEB) model was modified and validated for use in real-time irrigation management. We modeled spatial ET for maize and soybean fields in eastern Nebraska for the 2011-2013 growing seasons. We used Landsat 5, 7, and 8 imagery as remote sensing inputs. In the TSEB, we used the Priestly-Taylor (PT) approximation for canopy latent heat flux, as in the original model formulations. We also used the Penman-Monteith (PM) approximation for comparison. We compared energy balance fluxes and computed ET with measurements from three eddy covariance systems within the study area. Net radiation was underestimated by the model when data from a local weather station were used as input, with mean bias error (MBE) of -33.8 to -40.9 W m(-2). The measured incident solar radiation appeared to be biased low. The net radiation model performed more satisfactorily when data from the eddy covariance flux towers were input into the model, with MBE of 5.3 to 11.2 W m(-2). We removed bias in the daily energy balance ET using a dimensionless multiplier that ranged from 0.89 to 0.99. The bias-corrected TSEB ET, using weather data from a local weather station and with local ground data in thermal infrared imagery corrections, had MBE = 0.09 mm d(-1) (RMSE = 1.49 mm d(-1)) for PM and MBE = 0.04 mm d(-1) (RMSE = 1.18 mm d(-1)) for PT. The hybrid model used statistical interpolation to combine the two ET estimates. We computed weighting factors for statistical interpolation to be 0.37 to 0.50 for the PM method and 0.56 to 0.64 for the PT method. Provisions were added to the model, including a real-time crop coefficient methodology, which allowed seasonal crop coefficients to be computed with relatively few remote sensing images. This methodology performed well when compared to basal crop coefficients computed using a full season of input imagery. Water balance ET compared favorably with the eddy covariance data after incorporating the TSEB ET. For a validation dataset, the magnitude of MBE decreased from -0.86 mm d(-1) (RMSE = 1.37 mm d(-1)) for the Kcbrf alone to -0.45 mm d(-1) (RMSE = 0.98 mm d(-1)) and -0.39 mm d(-1) (RMSE = 0.95 mm d(-1)) with incorporation of the TSEB ET using the PM and PT methods, respectively. However, the magnitudes of MBE and RMSE were increased for a running average of daily computations in the full May-October periods. The hybrid model did not necessarily result in improved model performance. However, the water balance model is adaptable for real-time irrigation scheduling and may be combined with forecasted reference ET, although the low temporal frequency of satellite imagery is expected to be a challenge in real-time irrigation management.
机译:准确产生空间土壤水平图对于许多类型的灌溉管理有用。混合基于基于反射率的基础作物系数(K-CBRF)和双源能量平衡(TSEB)模型的混合遥感蒸散(ET)模型被修改并验证用于实时灌溉管理。我们在2011 - 2013年成长季节建模了内巴斯加州玉米和大豆田的Spatial等。我们使用Landsat 5,7和8图像作为遥感输入。在TSEB中,我们使用祭司泰勒(PT)近似用于冠层潜热通量,如原版模型配方中。我们还使用Penman-Monteith(PM)近似进行比较。我们比较了能量平衡通量和计算的等,从研究区域内的三个涡旋协方差系统进行了测量。当从本地气象站的数据用作输入时,模型低估了净辐射,其平均偏置误差(MBE)为-33.8至-40.9 W m(-2)。测量的入射太阳辐射似乎偏置低。当来自涡旋协方差磁通塔的数据输入模型时,净辐射模型更令人满意地进行,MBE为5.3至11.2W m(-2)。我们使用范围为0.89至0.99的无量纲乘数,我们在日常能量平衡等中移除了偏差。使用来自当地气象站的天气数据和在热红外图像校正中使用天气数据的偏置TSEB等,具有MBE = 0.09 mm D(-1)(RMSE = 1.49mm D(-1)) MBE = 0.04 mm d(-1)(Rmse = 1.18 mm d(-1))用于pt。混合模型使用统计插值来组合两个ET估计。对于PP方法,我们计算统计插值的加权因子为0.37至0.50,为PT方法0.56至0.64。将规定添加到模型中,包括实时作物系数方法,其允许使用相对较少的遥感图像计算季节性作物系数。与使用全季的输入图像计算的基底作物系数相比,该方法表现良好。水平ET与涡旋ET后的涡流协方差数据有利地比较。对于验证数据集,MBE的幅度从-0.86 mm d(-1)(Rmse = 1.37mm d(-1))单独为-0.45 mm d(-1)(Rmse = 0.98 mm d( -1))和-0.39mm d(-1)(Rmse = 0.95mm d(-1))分别使用PM和PT方法掺入TSEB等。然而,MBE和RMSE的大小增加了全年5月期间的日常计算的平均值。混合模型并不一定会导致改进的模型性能。然而,水平衡模型适用于实时灌溉调度,并且可以与预测参考等组合,尽管卫星图像的低时间频率预计是实时灌溉管理中的挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号