...
首页> 外文期刊>Theoretical and Computational Fluid Dynamics >Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes
【24h】

Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes

机译:基于机器学习的缩小阶型模型,用于各种形状的虚空体周围的不稳定流动

获取原文
获取原文并翻译 | 示例
           

摘要

We propose a method to construct a reduced order model with machine learning for unsteady flows. The present machine-learned reduced order model (ML-ROM) is constructed by combining a convolutional neural network autoencoder (CNN-AE) and a long short-term memory (LSTM), which are trained in a sequential manner. First, the CNN-AE is trained using direct numerical simulation (DNS) data so as to map the high-dimensional flow data into low-dimensional latent space. Then, the LSTM is utilized to establish a temporal prediction system for the low-dimensionalized vectors obtained by CNN-AE. As a test case, we consider flows around a bluff body whose shape is defined using a combination of trigonometric functions with random amplitudes. The present ML-ROMs are trained on a set of 80 bluff body shapes and tested on a different set of 20 bluff body shapes not used for training, with both training and test shapes chosen from the same random distribution. The flow fields are confirmed to be well reproduced by the present ML-ROM in terms of various statistics. We also focus on the influence of two main parameters: (1) the latent vector size in the CNN-AE, and (2) the time step size between the mapped vectors used for the LSTM. The present results show that the ML-ROM works well even for unseen shapes of bluff bodies when these parameters are properly chosen, which implies great potential for the present type of ML-ROM to be applied to more complex flows.
机译:我们提出了一种用机器学习来构建减少订单模型的方法,用于不稳定流。通过组合卷积神经网络自动化器(CNN-AE)和长短期存储器(LSTM)来构建本机学习的减少的订单模型(ML-ROM),其以顺序方式训练。首先,使用直接数值模拟(DNS)数据训练CNN-AE,以便将高维流数据映射到低维潜空间中。然后,LSTM用于建立由CNN-AE获得的低维度载体的时间预测系统。作为测试案例,我们考虑围绕的虚B形体流,其形状使用三角函数的组合具有随机幅度的组合。当前的ML-ROM在一组80个虚张体形状上培训,并在不用于训练的不同的20个凹槽体形状上测试,训练和测试形状从相同的随机分布中选择。在各种统计方面,确认流场通过当前ML-ROM进行很好地再现。我们还专注于两个主要参数的影响:(1)CNN-AE中的潜伏矢量尺寸,以及(2)用于LSTM的映射矢量之间的时间步长。本结果表明,当正确选择这些参数时,ML-ROM均匀地适用于凹槽体的不间断形状,这意味着当前类型的ML-ROM施加到更复杂的流动的巨大电位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号