首页> 外文期刊>The ISME journal emultidisciplinary journal of microbial ecology >Bayesian modeling reveals host genetics associated with rumen microbiota jointly influence methane emission in dairy cows
【24h】

Bayesian modeling reveals host genetics associated with rumen microbiota jointly influence methane emission in dairy cows

机译:贝叶斯造型揭示了与瘤胃微生物有关的宿主遗传学,共同影响奶牛的甲烷排放

获取原文
获取原文并翻译 | 示例
       

摘要

Reducing methane emissions from livestock production is of great importance for the sustainable management of the Earth's environment. Rumen microbiota play an important role in producing biogenic methane. However, knowledge of how host genetics influences variation in ruminal microbiota and their joint effects on methane emission is limited. We analyzed data from 750 dairy cows, using a Bayesian model to simultaneously assess the impact of host genetics and microbiota on host methane emission. We estimated that host genetics and microbiota explained 24% and 7%, respectively, of variation in host methane levels. In this Bayesian model, one bacterial genus explained up to 1.6% of the total microbiota variance. Further analysis was performed by a mixed linear model to estimate variance explained by host genomics in abundances of microbial genera and operational taxonomic units (OTU). Highest estimates were observed for a bacterial OTU with 33%, for an archaeal OTU with 26%, and for a microbial genus with 41% heritability. However, after multiple testing correction for the number of genera and OTUs modeled, none of the effects remained significant. We also used a mixed linear model to test effects of individual host genetic markers on microbial genera and OTUs. In this analysis, genetic markers inside host genes ABS4 and DNAJC10 were found associated with microbiota composition. We show that a Bayesian model can be utilized to model complex structure and relationship between microbiota simultaneously and their interaction with host genetics on methane emission. The host genome explains a significant fraction of between-individual variation in microbial abundance. Individual microbial taxonomic groups each only explain a small amount of variation in methane emissions. The identification of genes and genetic markers suggests that it is possible to design strategies for breeding cows with desired microbiota composition associated with phenotypes.
机译:减少畜牧业生产的甲烷排放对于地球环境的可持续管理,对畜牧业进行了重要意义。 Rumen Microbiota在生产生物甲烷方面发挥着重要作用。然而,了解宿主遗传学如何影响瘤胃微生物的变异及其对甲烷排放的关节作用是有限的。我们使用贝叶斯模型分析了来自750个乳制品奶牛的数据,同时评估宿主遗传学和微生物群对宿主甲烷排放的影响。我们估计,宿主遗传学和微生物群分别在宿主甲烷水平的变异分别解释了24%和7%。在这款贝叶斯模型中,一个细菌属占微生物群差异的1.6%。通过混合线性模型进行进一步的分析,以估计宿主基因组学中解释的差异在微生物属和操作分类单位(OTU)中的丰富。对于33%的细菌OTU,对于具有26%的古氏,以及具有41%遗传性的微生物属的细菌OTU,估计最高估计值。但是,在多次测试校正后对于Genera和Otus建模的数量,否则效果都不重要。我们还使用混合线性模型来测试单个宿主遗传标志物对微生物属和OTUS的效果。在该分析中,发现宿主基因ABS4和DNAJC10内的遗传标记与微生物脂蛋白组合物相关。我们表明,贝叶斯模型可用于模拟络合物结构和微生物群同时的关系及其与寄主遗传学对甲烷排放的相互作用。宿主基因组解释了微生物丰度的个体变异的显着分数。单个微生物分类群均仅解释甲烷排放量的少量变异。基因和遗传标记的鉴定表明,可以设计育种奶牛的策略,其中具有与表型相关的所需的微生物群组合物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号