...
首页> 外文期刊>The Journal of Chemical Thermodynamics >Modelling hydrate deposition and sloughing in gas-dominant pipelines
【24h】

Modelling hydrate deposition and sloughing in gas-dominant pipelines

机译:燃气优势管道中水合物沉积和脱落模拟

获取原文
获取原文并翻译 | 示例
           

摘要

We present a model for hydrate deposition and sloughing in gas dominated pipelines which allows for rapid estimations of the pressure and temperature profiles along a horizontal pipeline during normal operation in the hydrate forming region in the presence of monoethylene glycol (MEG). Previous models assume that the hydrate deposit growing at the pipe wall is stable, which may lead to an overestimation of the pressure drop over time. Hydrate growth rates were calculated using a classical hydrate kinetic model combined with a simplified two-phase flow model for pipelines in the annular flow regime with droplet entrainment. Hydrate growth at the pipe wall, deposition of hydrate particles from the gas stream and sloughing due to shear fracture of the deposited film contributed to the evolution of the hydrate deposit. The model parameters included a scaling factor to the kinetic rate of hydrate growth and a particle deposition efficiency factor. The fraction of deposited particles forming a stable hydrate film at the pipe wall through sintering and the shear strength of the deposit were introduced as two additional parameters to enable simulation of sloughing events. The tuned model predicted hydrate formation within 40% and pressure drop within 50% of measurements previously obtained in a gas-dominated flow loop over a wide range of subcoolings, MEG concentrations and high and intermediate gas velocities. The observed decrease of the kinetic factor with decreasing gas velocity indicated larger resistances to hydrate growth in the entrained droplets at lower flow rates, while the increase of the deposition parameter with MEG concentration was consistent with a particle adhesion/cohesion mechanism based on the formation of a capillary bridge. The preliminary sloughing model presented in this work, combined with flowloop testing, has allowed the first in-situ determinations of the effective shear strength of the hydrate deposits (in the range of 100-200 Pa) which is a ke
机译:我们提出了一种用于在气体主导管道中的水合物沉积和脱落的模型,其允许在单乙二醇(MEG)存在下水合物成形区域的正常操作期间沿水平管道快速估计压力和温度曲线。以前的模型假设在管壁上生长的水合物沉积物是稳定的,这可能导致压降随时间的高估。使用经典水合物动力学模型计算水合物生长速率,该模型与具有液滴夹带的环形流动状态下的管道中简化的两相流动模型结合。管壁的水合物生长,沉积来自气流的水合物颗粒,由于沉积的薄膜的剪切断裂而脱落有助于水合物沉积物的演变。模型参数包括水合物生长动力速率和颗粒沉积效率因子的缩放因子。通过烧结在管壁处形成稳定水合物膜的沉积颗粒的分数和沉积物的剪切强度作为两个额外的参数,以实现脱落事件的模拟。调谐模型在40%内预测水合物形成,并且在宽范围的过脱机,MEG浓度和高和中间气体速度下在气体主导的流量回路中获得的50%的压力下降。观察到的气体速度降低的动力因子的减少表明了在较低流速下夹带液滴中的较大电阻,同时通过基于形成的颗粒粘附/内聚机制,沉积参数的增加与基于形成的颗粒粘附/内聚机制一致毛细管桥。在这项工作中提出的初步蜕皮模型,结合流量的测试,允许第一原位测定的水合物沉积物的有效剪切强度(在100-200Pa的范围内),这是ke

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号