首页> 外文期刊>The European physical journal, B. Condensed matter physics >Competing contact processes in the Watts-Strogatz network
【24h】

Competing contact processes in the Watts-Strogatz network

机译:竞争瓦特 - Strogatz网络中的接触过程

获取原文
获取原文并翻译 | 示例
           

摘要

We investigate two competing contact processes on a set of Watts-Strogatz networks with the clustering coefficient tuned by rewiring. The base for network construction is one-dimensional chain of N sites, where each site i is directly linked to nodes labelled as i +/- 1 and i +/- 2. So initially, each node has the same degree k(i) = 4. The periodic boundary conditions are assumed as well. For each node i the links to sites i + 1 and i + 2 are rewired to two randomly selected nodes so far not-connected to node i. An increase of the rewiring probability q influences the nodes degree distribution and the network clusterization coefficient C. For given values of rewiring probability q the set N(q) = {N-1, N-2,..., N-M} of M networks is generated. The network's nodes are decorated with spin-like variables s(i) is an element of {S, D}. During simulation each S node having a D-site in its neighbourhood converts this neighbour from D to S state. Conversely, a node in D state having at least one neighbour also in state D-state converts all nearest-neighbours of this pair into D-state. The latter is realized with probability p. We plot the dependence of the nodes S final density n(S)(T) on initial nodes S fraction n(S)(0). Then, we construct the surface of the unstable fixed points in (C, p, n(S)(0)) space. The system evolves more often toward n(S)(T) = 1 for (C, p, n(S)(0)) points situated above this surface while starting simulation with (C, p, n(S)(0)) parameters situated below this surface leads system to n(S)(T) = 0. The points on this surface correspond to such value of initial fraction n(S)* of S nodes (for fixed values C and p) for which their final density is n(S)(T) = 1/2.
机译:我们在一组Watts-Strogatz网络上调查了两种竞争的接触过程,通过重新加速进行了聚类系数。网络构造的基础是N个站点的一维链,其中每个站点I直接链接到标记为I +/- 1和I +/- 2.最初,每个节点具有相同的程度k(i) = 4。假设周期性边界条件。对于每个节点,我将与站点I + 1和i + 2的链接重新连接到到目前为止未连接到节点i的两个随机选择的节点。重新布线概率q的增加会影响节点度分布和网络集群化系数C.对于重新布线概率q的给定值q的设置n(q)= {n-1,n-2,...,nm}为m生成网络。网络的节点以自旋状变量为单位(i)是{s,d}的元素。在模拟期间,在其邻域中具有D-位站的每个节点将该邻居转换为S状态。相反,在状态D-S状态中具有至少一个邻居的D状态中的节点将该对的所有最接近的邻居转换为D-态。后者用概率p实现。我们绘制节点S最终密度n(s)(t)对初始节点S馏分N(S)(0)的依赖性。然后,我们构造(C,P,N(0))空间中不稳定的固定点的表面。系统更常见于n(t)= 1的(c,p,n(0))在该表面上方的(c,p,n(0)),同时开始模拟(c,p,n(0) )位于该表面下方的参数引线系统(T)= 0.该表面上的点对应于S节点的初始分数N(S)N(用于固定值C和P)最终密度为n(t)= 1/2。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号