...
首页> 外文期刊>The Canadian Journal of Chemical Engineering >Impeller power draw during turbulent operation in solid-liquid suspensions
【24h】

Impeller power draw during turbulent operation in solid-liquid suspensions

机译:固体悬浮液中湍流操作期间叶轮功率绘制

获取原文
获取原文并翻译 | 示例

摘要

Experimental measurements with six impeller types in solid-liquid suspensions indicate that impeller power draw in the turbulent regime is approximately proportional to the solid-liquid suspension density when the solids are distributed throughout the liquid; however, the accuracy of this approach is limited and there are clear differences in the behaviours of the various impellers. In general, power draw increases are less than suspension density increases for impellers with large blade-trailing vortices, while power draw increases are equal to or greater than suspension density increases for impellers with smaller blade-trailing vortices. The power draw data is well-described using linear relations between the impeller power number and the density difference correlating parameter proposed by Micheletti et al.,([9]) with the slope of the relation being dependent on impeller type. More extensive testing with a pitched-blade turbine, using a greater variety of solids, found that the relation between the impeller power number and the density difference correlating parameter is independent of particle size for particles as large as 1 mm (1000 microns). For particles larger than 1.7 mm (1700 microns), in addition to suspension density, the solid volume fraction affects the pitched-blade turbine power number; however, it is difficult to determine if this effect exists at all scales or if it is a result of the large particle size relative to the impeller dimensions in the experimental system. For large particles, the power draw is increased by the addition of neutrally-buoyant particles that do not change the suspension density, with the magnitude of the increase being dependent on impeller type.
机译:具有六种固体液体悬架中的六种叶轮类型的实验测量表明,当固体分布在整个液体中时,湍流状态下的叶轮功率率近似与固液悬浮密度成比例;然而,这种方法的准确性是有限的,并且各种叶轮的行为存在明显的差异。通常,功率抽取增加小于具有大刀片拖曳涡流的叶轮的悬架密度增加,而功率抽取增加等于或大于具有较小叶片拖曳涡流的叶轮的悬架密度增加。利用Micheletti等,([9])所提出的叶轮功率数量和密度差异相关参数之间的线性关系,通过偏斜关系,与关系的倾斜度取决于叶轮类型,使用线性关系良好地描述。使用较大种类的固体具有俯仰叶片涡轮机更广泛的测试,发现叶轮功率数和密度差异相关参数之间的关系与大小为1mm(1000微米)的颗粒的粒度无关。对于大于1.7mm(1700微米)的颗粒,除悬浮密度外,固体级分除了倾斜叶片涡轮机电源数;然而,很难确定在所有尺度上存在这种效果,或者如果它是相对于实验系统中的叶轮尺寸的大的粒度的结果。对于大颗粒,通过添加不改变悬浮密度的中性浮力颗粒来增加功率绘图,其增加的幅度依赖于叶轮类型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号