...
首页> 外文期刊>The European physical journal, D. Atomic, molecular, and optical physics >Single-molecule localization microscopy as a promising tool for gamma H2AX/53BP1 foci exploration
【24h】

Single-molecule localization microscopy as a promising tool for gamma H2AX/53BP1 foci exploration

机译:单分子定位显微镜作为γH2AX / 53BP1焦点勘探的有希望的工具

获取原文
获取原文并翻译 | 示例

摘要

Quantification and structural studies of DNA double strand breaks (DSBs) are an essential part of radiobiology because DSBs represent the most serious damage introduced to the DNA molecule by ionizing radiation. Although standard immunofluorescence confocal microscopy has demonstrated its usefulness in a large number of research studies, it lacks the resolution required to separate individual, closely associated DSBs, which appear after cell exposure to high linear energy transfer (high-LET) radiation and can be visualized as clusters or streaks of radiation-induced repair foci (IRIFs). This prevents our deeper understanding of DSB induction and repair. Recent breakthroughs in super-resolution light microscopy, such as the development of single-molecule localization microscopy (SMLM), offer an optical resolution of approximately an order of magnitude better than that of standard confocal microscopy and open new horizons in radiobiological research. Unlike electron microscopy, SMLM (also referred to as "nanoscopy") preserves the natural structure of biological samples and is not limited to very thin sample slices. Importantly, SMLM not only offers a resolution on the order of approximately 10 nm, but it also provides entirely new information on the biochemistry and spatio-temporal organization of DSBs and DSB repair at the molecular level. Nevertheless, it is still challenging to correctly interpret these often surprising nanoscopy results. In the present article, we describe our first attempts to use SMLM to explore gamma H2AX and 53BP1 repair foci induced with( 15) N high-LET particles.
机译:DNA双链断裂(DSB)的定量和结构研究是放射生物学的重要组成部分,因为DSB通过电离辐射表示引入DNA分子的最严重损伤。虽然标准的免疫荧光共聚焦显微镜已经证明其在大量研究研究中的有用性,但它缺乏分离单独,密切相关的DSB所需的分辨率,该分辨率在细胞暴露于高线性能量转移(高风格)辐射后出现,并且可以可视化作为辐射诱导的修复灶(IRIFS)的簇或条纹。这可以防止我们更深入地了解DSB诱导和修复。超分辨率光学显微镜的最近突破,例如单分子定位显微镜(SMLM)的发展,优于标准共聚焦显微镜的光学分辨率大约为幅度,并在放射生物学研究中开放新的视野。与电子显微镜不同,SMLM(也称为“纳米镜”)保留生物样品的自然结构,不限于非常薄的样品切片。重要的是,SMLM不仅提供大约10纳米的分辨率,而且还提供了关于分子水平的DSB和DSB修复的生物化学和时空组织的全新信息。然而,正确解释这些经常令人惊讶的纳米检查结果仍然挑战。在本文中,我们描述了我们第一次使用SMLM探索γH2AX和53BP1修复灶具(15)n高颗粒的诱导的尝试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号