...
首页> 外文期刊>The Astrophysical Journal. Supplement Series >The Effect of Weak Resistivity and Weak Thermal Diffusion on Short-wavelength Magnetic Buoyancy Instability
【24h】

The Effect of Weak Resistivity and Weak Thermal Diffusion on Short-wavelength Magnetic Buoyancy Instability

机译:电阻率弱电阻率和弱热扩散对短波长磁性浮力不稳定的影响

获取原文
获取原文并翻译 | 示例

摘要

Magnetic buoyancy instability in weakly resistive and thermally conductive plasma is an important mechanism of magnetic field expulsion in astrophysical systems. It is often invoked, e.g., in the context of the solar interior. Here, we revisit a problem introduc'ed by Gilman: the short-wavelength linear stability of a plane layer of compressible isothermal and weakly diffusive fluid permeated by a horizontal magnetic field of strength decreasing with height. In this physical setting, we investigate the effect of weak resistivity and weak thermal conductivity on the short-wavelength perturbations, localized in the vertical direction, and show that the presence of diffusion allows to establish the wavelength of the most unstable mode, undetermined in an ideal fluid. When diffusive effects are neglected, the perturbations are amplified at a rate that monotonically increases as the wavelength tends to zero. We demonstrate that, when the resistivity and thermal conduction are introduced, the wavelength of the most unstable perturbation is established and its scaling law with the diffusion parameters depends on gradients of the mean magnetic field, temperature, and density. Three main dynamical regimes are identified, with the wavelength of the most unstable mode scaling as either lambda/d similar to U-k(3/5) or lambda/d similar to U-k(3/4) or lambda/d similar to U-k(1/3), where d is the layer thickness and U-k is the ratio of the characteristic thermal diffusion velocity scale to the free-fall velocity. Our analytic results are backed up by a series of numerical solutions. The two-dimensional interchange modes are shown to dominate over three-dimensional ones when the magnetic field and/or temperature gradients are strong enough.
机译:弱电阻和导热等离子体中的磁性浮力不稳定性是天体物理系统中磁场驱逐的重要机制。通常在太阳内部的背景下调用它。在这里,我们通过Gilman介绍了吉尔曼的问题:通过高度的水平磁场渗透到渗透的可压缩等温和弱散射流体的平面层的短波长线性稳定性。在这种物理设置中,我们研究了弱电阻率和弱导热率对垂直方向的短波扰动的影响,并表明扩散的存在允许建立最不稳定模式的波长,未确定理想的液体。当忽略扩散效应时,在单调增加随着波长趋于零的情况下,扰动被扩增。我们证明,当引入电阻率和热传导时,建立了最不稳定的扰动的波长,并且其具有扩散参数的缩放法取决于平均磁场,温度和密度的梯度。鉴定了三个主要动态制度,具有最不稳定的模式缩放的波长,作为类似于英国(3/5)或类似于英国(3/4)或类似于英国的Lambda / D的λ/ d(1 / 3),其中D是层厚度,英国是特征热扩散速度比的比率与自由落体速度。我们的分析结果由一系列数值解决方案备份。当磁场和/或温度梯度足够强时,示出了二维交换模式以支配在三维。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号