...
首页> 外文期刊>Quarterly Journal of the Royal Meteorological Society >Drag associated with 3D trapped lee waves over an axisymmetric obstacle in two-layer atmospheres
【24h】

Drag associated with 3D trapped lee waves over an axisymmetric obstacle in two-layer atmospheres

机译:在两层大气中的轴对称障碍物上与3D被困李波相关联的拖动

获取原文
获取原文并翻译 | 示例
           

摘要

Mountain-wave drag is evaluated explicitly using linear theory and verified against numerical simulations for the flow of idealized two-layer atmospheres with piecewise-constant stratification over an axisymmetric mountain. Static stability is either higher in the bottom layer and lower in the top layer (Scorer's atmosphere) or neutral in the bottom layer and positive in the top layer, separated by a sharp temperature inversion (Vosper's atmosphere). The drag receives contributions from long mountain waves propagating vertically in the upper layer and from short trapped lee waves propagating downstream, either in the lower layer or at the inversion. This trapped lee-wave drag, which is typically not represented in parametrizations, acts on the atmosphere at low levels. As in flow over a 2D ridge, this drag has several maxima as a function of the height of the interface between the two layers for Scorer's atmosphere and is maximized by a marked Scorer parameter contrast between those layers. In Vosper's atmosphere, there is a single trapped lee-wave drag maximum for Froude numbers near one, when the wind speed matches the phase speed of the dominant interfacial waves, and this drag is maximized for relatively low interface elevations, for which waves at the inversion have higher amplitude. The 3D flow geometry allows resonant wave modes to have various horizontal orientations and a continuous spectrum, forming a dispersive Kelvin ship wave' pattern, and expanding the regions in parameter space where the drag is non-zero relative to 2D flow, but it also decreases the drag magnitude dispersively. Nevertheless, the trapped lee-wave drag on an axisymmetric obstacle can still equal or exceed the drag associated with vertically propagating waves and the reference hydrostatic drag valid for a uniformly stratified atmosphere.
机译:使用线性理论明确评估山波拖动,并针对在轴对称山上具有分段恒定分层的理想两层大气流的数值模拟的数值模拟。静止稳定性在底层中较高,在顶层(读入机构的大气)中较低,在底层中中性和顶层中的正,通过尖锐的温度反转(伪装大气)分离。拖动接收从上层传播的长山波的贡献,并且从下层传播下游或在倒档中传播的短捕获的lee波。这种被困的lee波阻力,通常不是在参数化中表示的,在低水平的气氛上起作用。由于在2D脊上的流量中,该拖动具有几个最大值,作为识别器大气的两层之间接口高度的函数,并且通过这些层之间的标记的得分手参数对比度最大化。在助攻的大气中,当风速与主界面波的相位速度匹配时,弗劳德号码有一个被捕获的lee-wave最大值,并且这种阻力最大化为相对较低的接口高度,在其中波浪反转具有更高的幅度。 3D流几何形状允许共振波模式具有各种水平方向和连续频谱,形成分散的kelvin船波的图案,并在拖动相对于2D流中的拖动非零的参数空间中扩展区域,但它也降低了分散地拖动幅度。然而,轴对称障碍物上的被捕获的lee波拖动仍然可以等于或超过与垂直传播波相关的拖动,以及参考静电拖动用于均匀分层的气氛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号