...
首页> 外文期刊>Progress in Artificial Intelligence >Biosensor Using a One-Port Interdigital Capacitor: A Resonance-Based Investigation of the Permittivity Sensitivity for Microfluidic Broadband Bioelectronics Applications
【24h】

Biosensor Using a One-Port Interdigital Capacitor: A Resonance-Based Investigation of the Permittivity Sensitivity for Microfluidic Broadband Bioelectronics Applications

机译:生物传感器使用单端口的渐曲线电容:基于共振的微流体宽带生物电解应用的介电常灵敏度研究

获取原文
获取原文并翻译 | 示例
           

摘要

Electronics is a field of study ubiquitous in our daily lives, since this discipline is undoubtedly the driving force behind developments in many other disciplines, such as telecommunications, automation, and computer science. Nowadays, electronics is becoming more and more widely applied in life science, thus leading to an increasing interest in bioelectronics that is a major segment of bioengineering. A bioelectronics application that has gained much attention in recent years is the use of sensors for biological samples, with emphasis given to biosensors performing broadband sensing of small-volume liquid samples. Within this context, this work aims at investigating a microfluidic sensor based on a broadband one-port coplanar interdigital capacitor (IDC). The microwave performance of the sensor loaded with lossless materials under test (MUTs) is achieved by using finite-element method (FEM) simulations carried out with Ansoft's high frequency structure simulator (HFSS). The microfluidic channel for the MUT has a volume capacity of 0.054 mu L. The FEM simulations show a resonance in the admittance that is reproduced with a five-lumped-element equivalent-circuit model. By changing the real part of the relative permittivity of the MUT up to 70, the corresponding variations in both the resonant frequency of the FEM simulations and the capacitance of the equivalent-circuit model are analyzed, thereby enabling assessment of the permittivity sensitivity of the studied IDC. Furthermore, it is shown that, although the proposed local equivalent-circuit model is able to mimic faithfully the FEM simulations locally around the resonance in the admittance, a higher number of circuit elements can achieve a better agreement between FEM and equivalent-circuit simulation over the entire broad frequency going range from 0.3 MHz to 35 GHz.
机译:电子产品是我们日常生活中无处不在的研究领域,因为这一学科无疑是许多其他学科的发展力,如电信,自动化和计算机科学。如今,电子产品在生命科学中变得越来越广泛,从而导致对生物电体的兴趣日益越来越兴趣,这是生物化的主要部分。近年来,生物电解应用程序越来越多的关注是对生物样品的传感器使用,重点是对小体积液体样品进行宽带感测的生物传感器。在此背景下,该工作旨在根据宽带单端口共面叉指式电容器(IDC)来研究微流体传感器。通过使用Ansoft的高频结构模拟器(HFSS)进行的有限元方法(FEM)模拟,实现了被测无损材料的传感器的微波性能。用于突变的微流体通道具有0.054μL的体积容量。有限元模拟在通过五块元件等效电路模型再现的导纳中显示出共振。通过改变磁体的相对介电常数的实际部分,分析了有限元模拟的谐振频率和等效电路模型的电容的相应变化,从而能够评估所研究的介电常数灵敏度IDC。此外,如图所示,尽管所提出的本地等效电路模型能够忠实地围绕入院的共振局部地模拟FEM模拟,但是更有的电路元件可以在FEM和等效电路模拟之间实现更好的协议整个宽频率的范围从0.3 MHz到35 GHz。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号