首页> 外文期刊>Proteins: Structure, Function, and Genetics >Thermodynamics of an aminoglycoside modifying enzyme with low substrate promiscuity: The aminoglycoside N3 acetyltransferase-VIa
【24h】

Thermodynamics of an aminoglycoside modifying enzyme with low substrate promiscuity: The aminoglycoside N3 acetyltransferase-VIa

机译:具有低底物滥交的氨基糖苷酱改性酶的热力学:氨基糖苷N3乙酰转移酶 - 通孔

获取原文
获取原文并翻译 | 示例
           

摘要

Kinetic, thermodynamic, and structural properties of the aminoglycoside N3-acetyltransferase-VIa (AAC-VIa) are determined. Among the aminoglycoside N3-acetyltransferases, AAC-VIa has one of the most limited substrate profiles. Kinetic studies showed that only five aminoglycosides are substrates for this enzyme with a range of fourfold difference in k(cat) values. Larger differences in K-M (approximate to 40-fold) resulted in approximate to 30-fold variation in k(cat)/K-M. Binding of aminoglycosides to AAC-VIa was enthalpically favored and entropically disfavored with a net result of favorable Gibbs energy (G<0). A net deprotonation of the enzyme, ligand, or both accompanied the formation of binary and ternary complexes. This is opposite of what was observed with several other aminoglycoside N3-acetyltransferases, where ligand binding causes more protonation. The change in heat capacity (Cp) was different in H2O and D2O for the binary enzyme-sisomicin complex but remained the same in both solvents for the ternary enzyme-CoASH-sisomicin complex. Unlike, most other aminoglycoside-modifying enzymes, the values of Cp were within the expected range of protein-carbohydrate interactions. Solution behavior of AAC-VIa was also different from the more promiscuous aminoglycoside N3-acetyltransferases and showed a monomer-dimer equilibrium as detected by analytical ultracentrifugation (AUC). Binding of ligands shifted the enzyme to monomeric state. Data also showed that polar interactions were the most dominant factor in dimer formation. Overall, thermodynamics of ligand-protein interactions and differences in protein behavior in solution provide few clues on the limited substrate profile of this enzyme despite its >55% sequence similarity to the highly promiscuous aminoglycoside N3-acetyltransferase. Proteins 2017; 85:1258-1265. (c) 2017 Wiley Periodicals, Inc.
机译:测定氨基糖苷N3-乙酰转移酶 - 通孔(AAC-通孔)的动力学,热力学和结构性质。在氨基糖苷N3-乙酰转移酶中,AAC-孔具有最有限的基板型材之一。动力学研究表明,只有五种氨基糖苷类是该酶的底物,其k(猫)值中的四倍差异。 K-M的较大差异(近似为40倍)导致k(猫)/ k-m的30倍变化近似。氨基糖苷与AAC-通孔的结合被焓偏爱并促进富含吉布斯能量的净结果(G <0)。酶,配体或两者的净去质子化伴随二元和三元复合物的形成。这与用几种其他氨基糖苷N3-乙酰转移酶观察到的内容相反,其中配体结合引起更多质子化。热容量(CP)的变化在H 2 O和D2O中不同于二元酶 - SisomicIN复合物,但在三元酶 - Coash-sisomicin复合物的溶剂中保持不变。与大多数其他氨基糖苷酱改性酶不同,CP的值在预期的蛋白质 - 碳水化合物相互作用范围内。 AAC-孔的溶液行为也与更混杂的氨基糖苷类N3-乙酰转移酶不同,并且如通过分析超速离心(AUC)检测到的单体二聚体平衡。配体的结合将酶移至单体状态。数据还表明,极性相互作用是二聚体形成中最显着的因素。总体而言,尽管其与高度混杂的氨基糖苷N3-乙酰转移酶的序列相似,但溶液中配体 - 蛋白质相互作用的热力学在该酶的有限基材轮廓上提供了很少的线索。蛋白质2017; 85:1258-1265。 (c)2017 Wiley期刊,Inc。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号