首页> 外文期刊>Protein Science: A Publication of the Protein Society >Benchmarking a computational design method for the incorporation of metal ion‐binding sites at symmetric protein interfaces
【24h】

Benchmarking a computational design method for the incorporation of metal ion‐binding sites at symmetric protein interfaces

机译:基于对称蛋白质界面掺入金属离子结合位点的计算设计方法

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract The design of novel metal‐ion binding sites along symmetric axes in protein oligomers could provide new avenues for metalloenzyme design, construction of protein‐based nanomaterials and novel ion transport systems. Here, we describe a computational design method, symmetric protein recursive ion‐cofactor sampling (SyPRIS), for locating constellations of backbone positions within oligomeric protein structures that are capable of supporting desired symmetrically coordinated metal ion(s) chelated by sidechains (chelant model). Using SyPRIS on a curated benchmark set of protein structures with symmetric metal binding sites, we found high recovery of native metal coordinating rotamers: in 65 of the 67 (97.0%) cases, native rotamers featured in the best scoring model while in the remaining cases native rotamers were found within the top three scoring models. In a second test, chelant models were crossmatched against protein structures with identical cyclic symmetry. In addition to recovering all native placements, 10.4% (8939/86013) of the non‐native placements, had acceptable geometric compatibility scores. Discrimination between native and non‐native metal site placements was further enhanced upon constrained energy minimization using the Rosetta energy function. Upon sequence design of the surrounding first‐shell residues, we found further stabilization of native placements and a small but significant (1.7%) number of non‐native placement‐based sites with favorable Rosetta energies, indicating their designability in existing protein interfaces. The generality of the SyPRIS approach allows design of novel symmetric metal sites including with non‐natural amino acid sidechains, and should enable the predictive incorporation of a variety of metal‐containing cofactors at symmetric protein interfaces.
机译:摘要沿蛋白质低聚物对称轴的新型金属离子结合位点的设计可以为金属酶设计,蛋白质的纳米材料和新型离子传输系统的构建提供新的途径。在这里,我们描述了一种计算设计方法,对称蛋白递归离子 - Cof-CoFactor采样(Sypris),用于定位能够在能够支撑由侧链螯合的所需对称协调的金属离子(螯合模型)的寡聚蛋白质结构内的骨架位置内的骨架位置的星座。使用Sypris在具有对称金属结合位点的策粒结构蛋白质结构上,我们发现了高回收的天然金属协调转子:在67(97.0%)的65例中,在剩下的情况下,最佳评分模型中的天然旋转仪在剩下的情况下本土转子在前三名评分型号内被发现。在第二次测试中,螯合模型与具有相同循环对称的蛋白质结构进行交叉。除了恢复所有本土展示局部,10.4%(8939/86013)的非本土展示,还有可接受的几何兼容性评分。在使用Rosetta能量功能的受限最小化时进一步增强了天然和非本地金属站点的歧视。在周围的第一壳残基的序列设计时,我们发现进一步稳定天然放置和小但重要的(1.7%)基于非天然放置的位点,其具有良好的Rosetta能量,表明其在现有蛋白质界面中的可设计性。 Sypris方法的一般性允许设计新的对称金属位点,包括与非天然氨基酸侧链,并且应使得能够在对称蛋白质接口处预测含有多种含金属的辅因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号