...
首页> 外文期刊>Protein Science: A Publication of the Protein Society >Insights revealed by the co‐crystal structure of the Saccharomyces cerevisiae Saccharomyces cerevisiae histidine phosphotransfer protein Ypd1 and the receiver domain of its downstream response regulator Ssk1
【24h】

Insights revealed by the co‐crystal structure of the Saccharomyces cerevisiae Saccharomyces cerevisiae histidine phosphotransfer protein Ypd1 and the receiver domain of its downstream response regulator Ssk1

机译:Saccharomyces Cerevisiae酿酒酵母组粒细胞组氨酸磷脂替代蛋白YPD1和下游响应调节器SSK1的接收域的洞察

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Two‐component signaling systems are the primary means by which bacteria, archaea, and certain plants and fungi react to their environments. The model yeast, Saccharomyces cerevisiae , uses the Sln1 signaling pathway to respond to hyperosmotic stress. This pathway contains a hybrid histidine kinase (Sln1) that autophosphorylates and transfers a phosphoryl group to its own receiver domain (R1). The phosphoryl group is then transferred to a histidine phosphotransfer protein (Ypd1) that finally passes it to the receiver domain (R2) of a downstream response regulator (Ssk1). Under normal conditions, Ssk1 is constitutively and preferentially phosphorylated in the phosphorelay. Upon detecting hyperosmotic stress, Ssk1 rapidly dephosphorylates and activates the high‐osmolarity glycerol (HOG) pathway, initiating a response. Despite their distinct physiological roles, both Sln1 and Ssk1 bind to Ypd1 at a common docking site. Co‐crystal structures of response regulators in complex with their phosphorelay partners are scarce, leaving many mechanistic and structural details uncharacterized for systems like the Sln1 pathway. In this work, we present the co‐crystal structure of Ypd1 and a near wild‐type variant of the receiver domain of Ssk1 (Ssk1‐R2‐W638A) at a resolution of 2.80??. Our structural analyses of Ypd1‐receiver domain complexes, biochemical determination of binding affinities for Ssk1‐R2 variants, in silico free energy estimates, and sequence comparisons reveal distinctive electrostatic properties of the Ypd1/Ssk1‐R2‐W638A complex that may provide insight into the regulation of the Sln1 pathway as a function of dynamic osmolyte concentration.
机译:摘要双组分信令系统是细菌,古痤疮和某些植物和真菌对其环境反应的主要方法。模型酵母,酿酒酵母酿酒酵母,使用SLN1信号传导途径响应Hypermot患者。该途径含有杂化组氨酸激酶(SLN1),其自磷酸盐酸盐并将磷酰基转移到其自身的接收域(R1)。然后将磷酰基转移到组氨酸磷光酯蛋白(YPD1)中,其最终将其传递给下游响应调节剂(SSK1)的接收域(R2)。在正常条件下,SSK1体组成型并优先于磷酸化中磷酸化。在检测高染色胁迫后,SSK1快速去磷酸盐并激活高渗透甘油(猪)途径,启动响应。尽管它们具有不同的生理作用,但SLN1和SSK1都在公共对接站点绑定到YPD1。响应调节剂的共晶结构与其磷铝合浆的复合物是稀缺的,留下许多机械和结构细节,对于SLN1路径等系统。在这项工作中,我们呈现了SSK1(SSK1-R2-W638A)的接收域的YPD1和近野生型变体的共晶结构,分辨率为2.80 ??。我们的结构分析是YPD1-Rectiver结构域复合物,SSK1-R2变体的结合亲和力的生化测定,在硅自由能估计中,序列比较显示了YPD1 / SSK1-R2-W638A复合物的独特静电性能,可以提供进入的洞察力作为动态渗透浓度的函数调节SLN1途径。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号