...
首页> 外文期刊>Proceedings of the Royal Society. Biological sciences >The use of clamping grips and friction pads by tree frogs for climbing curved surfaces
【24h】

The use of clamping grips and friction pads by tree frogs for climbing curved surfaces

机译:用夹紧夹具和摩擦垫用树蛙爬上弯曲弯曲表面

获取原文
获取原文并翻译 | 示例
           

摘要

Most studies on the adhesive mechanisms of climbing animals have addressed attachment against flat surfaces, yet many animals can climb highly curved surfaces, like twigs and small branches. Here we investigated whether tree frogs use a clamping grip by recording the ground reaction forces on a cylindrical object with either a smooth or anti-adhesive, rough surface. Furthermore, we measured the contact area of fore and hindlimbs against differently sized transparent cylinders and the forces of individual pads and subarticular tubercles in restrained animals. Our study revealed that frogs use friction and normal forces of roughly a similar magnitude for holding on to cylindrical objects. When challenged with climbing a non-adhesive surface, the compressive forces between opposite legs nearly doubled, indicating a stronger clamping grip. In contrast to climbing flat surfaces, frogs increased the contact area on all limbs by engaging not just adhesive pads but also subarticular tubercles on curved surfaces. Our force measurements showed that tubercles can withstand larger shear stresses than pads. SEM images of tubercles revealed a similar structure to that of toe pads including the presence of nano-pillars, though channels surrounding epithelial cells were less pronounced. The tubercles' smaller size, proximal location on the toes and shallow cells make them probably less prone to buckling and thus ideal for gripping curved surfaces.
机译:大多数关于攀爬动物的粘合机制的研究已经解决了对平面的附着,但许多动物可以爬上高度弯曲的表面,如树枝和小分支。在这里,我们研究了树蛙是否通过将夹紧夹持在圆柱形物体上与光滑或抗粘接,粗糙表面上的接地反作用力记录使用夹紧夹具。此外,我们测量前面和后肢的接触面积,对不同尺寸的透明圆柱体和狭窄的动物中的单个垫和子位数结节的力。我们的研究表明,青蛙使用摩擦和正常力大致具有相似的幅度来保持圆柱形物体。当爬上非粘合表面的挑战时,相对腿之间的压缩力几乎加倍,表示更强的夹紧夹具。与攀爬平面相比,青蛙通过接合不仅是粘合剂垫,而且在弯曲表面上的亚腔结节也增加了所有肢体上的接触区域。我们的力量测量表明,结节可以承受比垫更大的剪切应力。结节的SEM图像显示出类似的脚趾垫的结构,包括纳米支柱的存在,但周围上皮细胞的频道不太明显。脚趾和浅电池上的结节较小尺寸,近端位置使它们可能不太容易弯曲,因此非常适合夹持弯曲表面。

著录项

  • 来源
  • 作者单位

    Max Planck Inst Intelligent Syst Heisenbergstr 3 D-70569 Stuttgart Germany;

    Nanjing Univ Aeronaut &

    Astronaut Inst Bioinspired Struct &

    Surface Engn 29 Yudao St Nanjing 210016 Jiangsu Peoples R China;

    Nanjing Univ Aeronaut &

    Astronaut Inst Bioinspired Struct &

    Surface Engn 29 Yudao St Nanjing 210016 Jiangsu Peoples R China;

    Univ Glasgow Ctr Cell Engn Joseph Black Bldg Univ Ave Glasgow G12 8QQ Lanark Scotland;

    Nanjing Univ Aeronaut &

    Astronaut Inst Bioinspired Struct &

    Surface Engn 29 Yudao St Nanjing 210016 Jiangsu Peoples R China;

    Univ Glasgow Ctr Cell Engn Joseph Black Bldg Univ Ave Glasgow G12 8QQ Lanark Scotland;

    Nanjing Univ Aeronaut &

    Astronaut Inst Bioinspired Struct &

    Surface Engn 29 Yudao St Nanjing 210016 Jiangsu Peoples R China;

    Max Planck Inst Intelligent Syst Heisenbergstr 3 D-70569 Stuttgart Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物科学;
  • 关键词

    climbing; friction grip; adhesive pad; subarticular tubercle; tree frog;

    机译:攀爬;摩擦握把;粘性垫;亚床结节;树蛙;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号