首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers, Part C. Journal of mechanical engineering science >Magnetohydrodynamics mixed convective flow driven through a static wedge including TiO2 nanomaterial with micropolar liquid: Similarity dual solutions via finite difference method
【24h】

Magnetohydrodynamics mixed convective flow driven through a static wedge including TiO2 nanomaterial with micropolar liquid: Similarity dual solutions via finite difference method

机译:磁力动力学混合的对流流动通过静电楔驱动,包括与微柱液体的TiO2纳米材料:相似性双溶液通过有限差分法

获取原文
获取原文并翻译 | 示例
           

摘要

This research scrutinizes the influence of titanium oxide (TiO2) nanoparticle on electrically conducting micropolar liquid driven through wedge with mixed convection and thermal radiation. Buoyancy opposing flow and buoyancy assisting flow are taken into consideration. Similarity parameters are employed to transmute the governing partial differential equations into ordinary differential equations and then obtained the dual solutions through finite difference method. Impacts of ensuing parameters on liquid velocity, temperature distribution, and microrotation field are described and argued. Dual solutions are realized in buoyancy opposing flow, whereas in buoyancy assisting flow outcome is unique. Nanoliquid velocity tends to decline in the first solution and enhances in the second solution due to nanoparticle volume fraction, whereas microrotation profiles increases in both solutions. Temperature distribution increases in the first solution and decreases in the second solution due to phi. Due to micropolar parameter, the velocity and microrotation profiles decrease in both solutions, whilst the temperature of fluid behaves in opposite manner. Results also showed that separation of boundary layer can be controlled through micropolar parameter and nanoparticle volume fraction. In addition, support of present outcomes is arranged through benchmarking by previous well-known limiting conditions and pledged that a fabulous agreement with these results.
机译:该研究审查了氧化钛(TiO2)纳米颗粒对通过楔驱通的电导和热辐射的导电微多液体的影响。考虑浮力相反的流动和浮力辅助流程。使用相似性参数来将控制部分微分方程传输到常微分方程中,然后通过有限差分方法获得双解。描述并争论了随后参数对液体速度,温度分布和微管状场的影响。在浮力相对流动中实现了双解决方案,而在浮力辅助流程结果中是独一无二的。纳米醌速度倾向于在第一溶液中下降并引起纳米颗粒体积分数的第二溶液中的增强,而微观反应型材在两种溶液中增加。温度分布在第一溶液中增加,并且由于PHI而减少第二溶液。由于微波利卡参数,速度和微量运动轮廓在两种解决方案中降低,而流体的温度以相反的方式行为。结果还表明,边界层的分离可以通过微柱参数和纳米颗粒体积分数来控制。此外,通过以前的众所周知的限制条件的基准,通过基准来安排对现有结果的支持,并承诺与这些结果有了很好的同意。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号