...
首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers, Part C. Journal of mechanical engineering science >Grinding-aided electrochemical discharge drilling in the light of electrochemistry
【24h】

Grinding-aided electrochemical discharge drilling in the light of electrochemistry

机译:借助电化学磨削辅助电化学放电钻探

获取原文
获取原文并翻译 | 示例
           

摘要

The electrically non-conductive materials like glass, ceramics, quartz, etc. are of great interest for many applications in modern industries. Machining them with high quality and at a faster rate is a challenging task. In this study, a novel technique called grinding aided electrochemical discharge drilling (G-ECDD) is demonstrated which uses a hollow diamond core drill as the tool for performing electrochemical discharge machining of borosilicate glass. The new hybrid technique enhances the material removal rate and machining accuracy to several folds by combining the thermal melting action of discharges and grinding action of the abrasive tool. This paper presents the experimental investigation on the material removal rate during G-ECDD of glass while using different electrolytes. An attempt has been made to explore the influence of electrolyte temperature on G-ECDD performance by maintaining the electrolyte at different temperatures. Experiments were conducted using three different electrolytes which include NaOH, KOH, and the mixture of both. The results obtained from this study revealed that an increase in temperature will favor chemical etching as well as electrochemical reaction rate. Also, it was observed that heating the electrolyte leads to an increase in the bubble density and enhances the ion mobility. This causes the formation of gas film at a faster rate and thereby improving the discharge activity. Thus, machining will be done at a faster rate. Better results are obtained while using a mixture of NaOH and KOH. From the microscopic images of the machined surface, it was observed that material removal mechanism in G-ECDD is a combination of grinding action, electrochemical discharges, and chemical etching. Response surface methodology was adopted for studying the influence of process parameters on the performance of G-ECDD. The new technique of grinding aided electrochemical discharge drilling proved its potential to machine borosilicate glass and simultaneously offers good material removal rate, repeatability, and accuracy.
机译:电不导电材料,如玻璃,陶瓷,石英等对现代行业的许多应用都非常感兴趣。以高质量和更快的速度加工它们是一个具有挑战性的任务。在该研究中,演示了一种新的技术,称为研磨辅助电化学放电钻井(G-ECDD),其使用中空金刚石芯钻作为用于执行硼硅酸盐玻璃电化学放电加工的工具。通过组合磨料工具的磨削作用,新的混合技​​术通过组合热熔动作用来提高材料去除速率和加工精度与几个折叠。本文介绍了使用不同电解质的G-ECDD在G-ECDD期间材料去除率的实验研究。已经尝试通过在不同温度下维持电解质来探讨电解质温度对G-ECDD性能的影响。使用三种不同的电解质进行实验,该电解质包括NaOH,KOH和两者的混合物。本研究获得的结果表明,温度的增加将有利于化学蚀刻以及电化学反应速率。而且,观察到加热电解质导致气泡密度的增加并增强离子迁移率。这使得以更快的速率形成气体膜,从而改善放电活动。因此,加工将以更快的速率进行。使用NaOH和KOH的混合物时获得了更好的结果。从加工表面的显微图像,观察到G-ECDD中的材料去除机制是研磨作用,电化学放电和化学蚀刻的组合。采用响应面方法来研究过程参数对G-ECDD性能的影响。研磨电化学放电钻探的新技术证明了其对机硼硅酸盐玻璃的潜力,同时提供良好的材料去除率,可重复性和精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号