首页> 外文期刊>Plasmonics >Practical Implementation of Accurate Finite-Element Calculations for Electromagnetic Scattering by Nanoparticles
【24h】

Practical Implementation of Accurate Finite-Element Calculations for Electromagnetic Scattering by Nanoparticles

机译:纳米颗粒电磁散射的准确有限元计算的实际实施

获取原文
获取原文并翻译 | 示例
       

摘要

The finite-element method (FEM) is increasingly used as a numerical tool to support experimental and theoretical studies of the optical properties of nanoparticles, in contexts such as surface-enhanced spectroscopy, molecular plasmonics, metamaterials, and optical trapping. Here, we investigate the validity of such calculations, focusing in particular on numerically challenging cases involving strong optical (plasmon) resonances and solutions with large electric field gradients and intensities. These are exemplified by elongated metallic nanoparticles and two closely spaced metallic spheres (dimer), where highly localized regions of intense electric field enhancements occur at the tip or in the gap, so-called electromagnetic hot-spots. We assess the accuracy of the FEM solutions by comparing the result to exact analytic solutions based on the T-matrix method for an elongated particle and generalized Mie theory for a dimer. Particular attention is given to the electromagnetic properties that have seldom been studied in this context, notably near-field properties such as surface-field enhancement factors and far-field radiation profiles. We also demonstrate explicitly how the accuracy of the FEM predictions can be inferred from the solution of two problems with different mesh and bounding box parameters. Such a numerical check is crucial in practice as no exact solutions are in general available to compare with. While we chose the commercial software COMSOL to illustrate our results, the methods and conclusions are equally applicable to other FEM implementations. We provide for convenience full details of how to set up these calculations in COMSOL, which we hope will allow readers to easily reproduce them and seamlessly adapt them to their modeling needs. We expect this work will cement the FEM as a reliable method for routine calculation of electromagnetic scattering by nanoparticles.
机译:有限元方法(FEM)越来越多地用作支持纳米颗粒的光学性质的实验性和理论研究,例如表面增强的光谱,分子沉体,超材料和光学诱捕。在这里,我们研究了这种计算的有效性,特别是在涉及具有大电场梯度和强度的强光学(等离子体)共振和溶液的数值挑战性案件。这些通过细长的金属纳米颗粒和两个紧密间隔的金属球(二聚体)举例说明,其中强烈的电场增强区域的高度局部区域发生在尖端或间隙中,所谓的电磁热点。通过将结果与基于T型矩阵法进行精确分析溶液,评估了FEM解决方案的准确性,基于T型矩阵法为二聚体的细长粒子和广义MIE理论。特别注意在这种情况下已经很少研究的电磁特性,特别是近场性质,例如表面上增强因子和远场辐射轮廓。我们还明确地证明了如何从不同网格和边界盒参数的两个问题的解决方案推断出有组织预测的准确性。这种数值检查在实践中至关重要,因为没有确切的解决方案通常可以与之比较。虽然我们选择商业软件COMSOL来说明我们的结果,但方法和结论同样适用于其他有限元件。我们提供了方便的完整详细信息,如何在COMSOL中设置这些计算,我们希望允许读者轻松再现它们,并将其无缝地调整它们以其建模需求。我们预计这项工作将使FEM作为一种可靠的方法,用于通过纳米颗粒进行电磁散射的常规计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号