...
首页> 外文期刊>Plasma Sources Science & Technology >The role of instability-enhanced friction on $‘anomalous' electron and ion transport in Hall-effect thrusters
【24h】

The role of instability-enhanced friction on $‘anomalous' electron and ion transport in Hall-effect thrusters

机译:不稳定增强摩擦对$“异常”电子和离子运输在霍尔效应推进中的作用

获取原文
获取原文并翻译 | 示例

摘要

Using a self-consistent 2D particle-in-cell (PIC) simulation, we investigate the electron transport in Hall-effect thrusters. The PIC simulation is explicit in time and models the axial and azimuthal directions of a thruster without using any artificial parametric or geometric scaling factors. The applied discharge voltage and external magnetic field causes electrons to drift in the azimuthal direction, and this drives an instability in the plasma that produces large amplitude oscillations in both the plasma density and azimuthal electric field. A Fourier transform in time and space shows that the oscillations follow a dispersion relation similiar to that for an ion acoustic instability (in agreement with a recent kinetic theory). Correlated with the presence of this instability is an enhanced electron cross-field transport; even in the absence of electron-wall collisions and secondary electron emission. The amplitude of plasma density oscillations (but not electric field oscillations) is found to decrease significantly in a region just downstream of the thruster exit (before then increasing again), and reaches levels similar to those measured experimentally with collective light scattering techniques. By taking relevant velocity moments of the electron distribution function in the PIC simulations, we reconstruct each term in the electron momentum conservation equation and demonstrate that ‘anomalous' electron transport can be explained entirely due to an instability-enhanced friction force between electrons and ions. This friction force acts as an additional momentum loss allowing electrons to cross the magnetic field, and as an accelerating force causing ions to rotate azimuthally in the same direction as the electrons. Clear evidence of ion-wave trapping in the instability electric field is observed.
机译:使用自我一致的2D粒子粒子(PIC)模拟,我们研究了霍尔效应推进器中的电子传输。 PIC模拟在时间明确,并在不使用任何人工参数或几何缩放因子的情况下模拟推进器的轴向和方位角方向。所施加的放电电压和外部磁场使电子沿方位角漂移,并且这驱动了在等离子体密度和方位角电场中产生大的幅度振荡的等离子体中的不稳定性。时间和空间中的傅里叶变换表明,振荡遵循与离子声不稳定性(与最近的动力学理论一致)类似的分散关系。与这种不稳定性的存在相关的是增强的电子跨场传输;即使在没有电子壁碰撞和二级电子发射的情况下。发现等离子体密度振荡(但不是电场振荡)的幅度在推进器出口下游(再次增加之前)的区域中显着减小,并且达到与集体光散射技术实验测量的水平。通过在PIC模拟中采取电子分布函数的相关速度时刻,我们在电子动量保护方程中重建每个术语,并证明“异常”电子传输可以完全由电子和离子之间的不稳定增强的摩擦力进行解释。这种摩擦力用作允许电子穿过磁场的额外动量损失,并且作为加速力导致离子以与电子相同的方向相同方向旋转方向异性。观察到在不稳定性电场中的离子波捕获的清晰证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号