首页> 外文期刊>Polymer Composites >Predicting Fatigue Damage in Interphase of Short Fiber Reinforced Rubber Composites Under Transverse Load
【24h】

Predicting Fatigue Damage in Interphase of Short Fiber Reinforced Rubber Composites Under Transverse Load

机译:在横向载荷下预测短纤维增强橡胶复合材料的相互作用疲劳损伤

获取原文
获取原文并翻译 | 示例
           

摘要

A computational model has been established for analyzing the interphase damage of short fiber reinforced rubber composites (SFRCs) under transverse static and fatigue tensile loads. A cohesive zone model was integrated with a stress-based fatigue damage model to simulate the damage initiation and propagation. To obtain the damage model parameters and validate the methodology, some tests of SFRCs under static and fatigue tensile loads were conducted. The simulation results agree well with the experimental data. It is observed that under static loads, the damage of SFRCs is dominated by the interphase damage before the strain reaches 38.04%. Under fatigue loads, the speed of damage propagation increases exponentially with cyclic numbers. Once the crack in the interphase is initiated, it extends to almost the entire interphase after several cycles because of the stress concentration near the crack tip. It is found that a good initial adhesion status of the interphase can effectively improve the antifatigue performance of SFRCs. (C) 2016 Society of Plastics Engineers
机译:已经建立了计算模型,用于分析横向静态和疲劳拉伸负荷下的短纤维增强橡胶复合材料(SFRC)的差异损伤。粘性区域模型与基于应力的疲劳损伤模型集成,以模拟损伤启动和传播。为了获得损伤模型参数并验证方法,对静态和疲劳拉伸负荷下的SFRC进行了一些测试。模拟结果与实验数据很好。观察到,在静态载荷下,SFRC的损伤在菌株达到38.04%之前的差异损伤主导。在疲劳负荷下,损坏传播的速度随着循环数字呈指数呈指数级增长。一旦开始间隔的裂缝,由于裂纹尖端附近的应力集中,它在几个循环之后几乎整个相互作用。发现良好的初始粘附状态可以有效地改善SFRC的抗衰叠性能。 (c)2016年塑料工程师协会

著录项

  • 来源
    《Polymer Composites》 |2018年第5期|共13页
  • 作者

    Chen Lili; Gu Boqin;

  • 作者单位

    Nanjing Tech Univ Sch Mech &

    Power Engn Nanjing 211816 Jiangsu Peoples R China;

    Nanjing Tech Univ Sch Mech &

    Power Engn Nanjing 211816 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 增强塑料、填充塑料;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号