首页> 外文期刊>Plasma physics reports >Transition into the improved core confinement mode as a possible mechanism for additional electron heating observed in the lower hybrid current drive experiments at the FT-2 tokamak
【24h】

Transition into the improved core confinement mode as a possible mechanism for additional electron heating observed in the lower hybrid current drive experiments at the FT-2 tokamak

机译:转变为改进的核心限制模式作为在FT-2 Tokamak的下杂交电流驱动实验中观察到的额外电子加热的可能机制

获取原文
获取原文并翻译 | 示例
           

摘要

In experiments on lower hybrid current drive (LHCD) carried out at the FT-2 tokamak, a substantial increase in the central electron temperature T (e) (r = 0 cm) from 550 to 700 eV was observed. A complex simulation procedure is used to explain a fairly high LHCD efficiency and the observed additional heating, which can be attributed to a transition into the improved core confinement (ICC) mode. For numerical simulations, data obtained in experiments with deuterium plasma at aOE (c) n (e) > = 1.6 x 10(19) m(-3) were used. Simulations by the GRILL3D, FRTC, and ASTRA codes have shown that the increase in the density and central temperature is apparently caused by a significant suppression of heat transport in the electron component. The mechanism for transition into the improved confinement mode at r < 3 cm can be associated with the broadening of the plasma current channel due to the lower hybrid drive of the current carried by superthermal and runaway electrons. In this case, the magnetic shear s = (r/q)(dq/dr) in the axial region of the plasma column almost vanishes during the RF pulse. In this study, the effect of lower hybrid waves on the plasma parameters, resulting in a transition into the ICC mode, is considered. New experimental and calculated data are presented that evidence in favor of such a transition. Special attention is paid to the existence of a threshold for the transition into the ICC mode in deuterium plasma.
机译:在在FT-2 Tokamak进行的较低混合电流驱动(LHCD)的实验中,观察到从550-700eV的中央电子温度T(e)(e)(e)(e)(r = 0cm)的大幅增加。复杂的模拟程序用于解释相当高的LHCD效率和观察到的额外加热,这可以归因于改进的核心限制(ICC)模式。对于数值模拟,使用在AOE(C)N(e)> = 1.6×10(19)m(-3)的用氘等离子体进行实验中获得的数据。通过GRILD3D,FRTC和ASTRA码的模拟表明,密度和中心温度的增加显然是由电子部件中的显着抑制热传输引起的。在R 3 cm处转换到改进的限制模式的机制可以与等离子体电流通道的展大相关联,这导致的等离子体电流通道由于通过高热和失控电子而携带的电流的下部混合驱动。在这种情况下,等离子体柱的轴向区域中的磁剪切S =(R / Q)(DQ / DR)在RF脉冲期间几乎消失。在该研究中,考虑了较低混合波对等离子体参数的影响,导致转换到ICC模式。提出了新的实验和计算的数据,证明有利于这种过渡的证据。特别注意在氘血浆中转换到ICC模式的阈值。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号