...
首页> 外文期刊>Plant, Cell & Environment >A ROP2-RIC1 pathway fine-tunes microtubule reorganization for salt tolerance in Arabidopsis
【24h】

A ROP2-RIC1 pathway fine-tunes microtubule reorganization for salt tolerance in Arabidopsis

机译:ROP2-RIC1途径微调拟南芥耐盐性的微管重新组织

获取原文
获取原文并翻译 | 示例

摘要

The reorganization of microtubules induced by salt stress is required for Arabidopsis survival under high salinity conditions. RIC1 is an effector of Rho-related GTPase from plants (ROPs) and a known microtubule-associated protein. In this study, we demonstrated that RIC1 expression decreased with long-term NaCl treatment, and ric1-1 seedlings exhibited a higher survival rate under salt stress. We found that RIC1 reduced the frequency of microtubule transition from shortening to growing status and knockout of RIC1 improved the reassembly of depolymerized microtubules caused by either oryzalin treatment or salt stress. Further investigation showed that constitutively activeROP2 promoted the reassembly of microtubules and the survival of seedlings under salt stress. A rop2-1 ric1-1 double mutant rescued the salt-sensitive phenotype of rop2-1, indicating that ROP2 functions in salt tolerance through RIC1. Although ROP2 did not regulate RIC1 expression upon salt stress, a quick but mild increase of ROP2 activity was induced, led to reduction of RIC1 on microtubules. Collectively, our study reveals an ROP2-RIC1 pathway that fine-tunes microtubule dynamics in response to salt stress in Arabidopsis. This finding not only reveals a new regulatory mechanism for microtubule reorganization under salt stress but also the importance of ROP signalling for salinity tolerance.
机译:在高盐度条件下拟南芥存活需要盐胁迫诱导的微管的重组。 RIC1是来自植物(ROP)和已知的微管相关蛋白的RHO相关GTP酶的效应器。在这项研究中,我们证明Ric1表达随着长期NaCl处理而降低,Ric1-1幼苗在盐胁迫下表现出更高的存活率。我们发现RIC1降低了从缩短到生长的微管过渡的频率,并且RIC1的敲除改善了由Oryzalin治疗或盐胁迫引起的解聚微管的重新组装。进一步的研究表明,组成型Activerop2促进了微管的重新组装和盐胁迫下幼苗的存活。 ROP2-1 RIC1-1双突变体救出了ROP2-1的盐敏感表型,表明ROP2通过RIC1的耐盐性。虽然ROP2未调节RIC1在盐胁迫时表达,但诱导了ROP2活性的快速但轻度增加,导致微管对RIC1的减少。一致性地,我们的研究揭示了一种ROP2-RIC1途径,其响应于拟南芥盐胁迫的微调动力学。这一发现不仅揭示了盐胁迫下微管重组的新调节机制,而且对盐度耐受性的ROP信号传导的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号