首页> 外文期刊>Plant Physiology and Biochemistry >Sulfur metabolic engineering enhances cadmium stress tolerance and root to shoot iron translocation in Brassica napus L
【24h】

Sulfur metabolic engineering enhances cadmium stress tolerance and root to shoot iron translocation in Brassica napus L

机译:硫磺代谢工程增强了镉胁迫耐受性和根部,以在Brassica Napus L中射击铁易位

获取原文
获取原文并翻译 | 示例
           

摘要

Serine acetyltransferase (SAT) (EC 2.3.1.30) is the rate-limiting enzyme of cysteine (Cys) biosynthesis, providing the decisive precursor for the ubiquitous defense thiol glutathione (GSH). Together with O-acetylserine (thiol) lyase (OAS-TL; EC 2.5.1.47) SAT generates Cys in the cytosol, plastids, and mitochondria of vascular plants. The current study aimed to overproduce Cys and GSH for enhanced stress tolerance via overexpression of the feedback-insensitive isoform of serine acetyltransferase from tobacco, i.e., NtSAT4. Constitutive overexpression of NtSAT4 in Brassica napus resulted in the 2.6-fold-4-fold higher SAT activity in different subcellular compartment-specific lines. This higher SAT activity led to a 2.5-fold-3.5-fold higher steady-state level of free Cys and 2.2-fold-5.3-fold elevated level of GSH in leaves compared with nontransformed plants. Among the compartment-specific lines, the mitochondrial targeted NtSAT4 overexpressor line M-182 showed the highest levels of Cys (3.5-fold) and GSH (5.3-fold) compared with wild-type plants. Overexpression of NtSAT4 conferred a physiological advantage in terms of enhanced tolerance against oxidative stress with hydrogen peroxide and the heavy metal cadmium (Cd). The NtSAT4 overexpressor lines showed a significantly higher amount of iron (Fe) translocation from roots to shoots compared with nontransformed plants. Overall, these results suggest that overexpression of NtSAT4 is a promising approach to creating plants with tolerance to heavy metals and oxidative stress and, in addition, may potentially improve plant nutrition in terms of enhanced Fe translocation from roots to shoots.
机译:丝氨酸乙酰转移酶(SAT)(EC 2.3.1.30)是半胱氨酸(Cys)生物合成的速率限制酶,为普遍无处不在的防御毒性谷胱甘肽(GSH)提供了决定性前体。与O-乙酰丝氨酸(硫醇)裂解酶(OAS-T1; EC 2.5.1.47)一起生成血管植物的细胞溶胶,塑料和线粒体中的CYS。目前的研究旨在通过来自烟草的反馈不敏感同种型的过表达来自烟草的反馈不敏感同种型的过度表达来提高Cys和GSH,即NTSAT4。芸苔NTSAT4中NTSAT4的组成型过表达导致不同亚细胞舱特异性线的2.6倍4倍的饱和活性。与非转化厂相比,这种较高的SAT活动导致2.5倍3.5倍的自由Cys和2.2倍5.3倍升高的GSH水平。在特定隔室的线中,线粒体靶向NTSAT4过度表达系M-182显示与野生型植物相比的最高水平的CYS(3.5倍)和GSH(5.3倍)。 NTSAT4的过度表达在通过过氧化氢和重金属镉(CD)的增强耐氧化应激的耐受性耐受性赋予生理优势。与非转化植物相比,NTSAT4过度表达系列显示出从根部的根部的铁(Fe)易位量显着较高。总体而言,这些结果表明,NTSAT4的过度表达是一种有望的方法,可以创建具有重金属和氧化应激的耐受性,并且此外,可能在从根部的增强的Fe易位方面潜在地改善植物营养。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号