首页> 外文期刊>Physical review, E >Modeling thermal inkjet and cell printing process using modified pseudopotential and thermal lattice Boltzmann methods
【24h】

Modeling thermal inkjet and cell printing process using modified pseudopotential and thermal lattice Boltzmann methods

机译:采用改进的伪电阻和热格式螺栓玻璃法建模热喷墨和电池印刷工艺

获取原文
获取原文并翻译 | 示例
           

摘要

Pseudopotential lattice Boltzmann methods (LBMs) can simulate a phase transition in high-density ratio multiphase flow systems. If coupled with thermal LBMs through equation of state, they can be used to study instantaneous phase transition phenomena with a high-temperature gradient where only one set of formulations in an LBM system can handle liquid, vapor, phase transition, and heat transport. However, at lower temperatures an unrealistic spurious current at the interface introduces instability and limits its application in real flow system. In this study, we proposed new modifications to the LBM system to minimize a spurious current which enables us to study nucleation dynamic at room temperature. To demonstrate the capabilities of this approach, the thermal ejection process is modeled as one example of a complex flow system. In an inkjet printer, a thermal pulse instantly heats up the liquid in a microfluidic chamber and nucleates bubble vapor providing the pressure pulse necessary to eject droplets at high speed. Our modifiedmethod can present a more realistic model of the explosive vaporization process since it can also capture a high-temperature/density gradient at nucleation region. Thermal inkjet technology has been successfully applied for printing cells, but cells are susceptible to mechanical damage or death as they squeeze out of the nozzle head. To study cell deformation, a spring network model, representing cells, is connected to the LBMthrough the immersed boundary method. Looking into strain and stress distribution of a cellmembrane at its most deformed state, it is found that a high stretching rate effectively increases the rupture tension. In other words,membrane deformation energy is released through creation of multiple smaller nanopores rather than big pores. Overall, concurrently simulating multiphase flow, phase transition, heat transfer, and cell deformation in one unified LB platform, we are able to provide a better insight into the bubble
机译:假软盘晶格Boltzmann方法(LBMS)可以模拟高密度比多相流动系统中的相变。如果通过状态方程与热LBMS耦合,它们可用于研究具有高温梯度的瞬时相变现象,其中LBM系统中只有一组配方可以处理液体,蒸汽,相转变和热传输。然而,在较低温度下,界面处的不切实际的杂散电流引入不稳定并限制其在实际流动系统中的应用。在这项研究中,我们提出了对LBM系统的新修改,以最大限度地减少杂散的电流,使我们能够在室温下研究成核动态。为了证明这种方法的能力,热喷射过程被建模为复杂流系统的一个示例。在喷墨打印机中,热脉冲立即将液体升温在微流体室中,并核成型气泡蒸汽,从而提供高速喷射液滴所需的压力脉冲。我们的修改方法可以提出更现实的爆炸性汽化过程模型,因为它还可以在成核区捕获高温/密度梯度。热喷墨技术已成功应用于印刷细胞,但在挤出喷嘴头外,细胞易受机械损坏或死亡。为了研究细胞变形,表示电池的弹簧网络模型连接到浸没边界法的LBmplough。在其最变形状态下调查蜂窝体的应变和应力分布,发现高拉伸速率有效地增加了破裂张力。换句话说,通过产生多个较小的纳米孔而不是大孔来释放膜变形能量。总体而言,同时模拟多相流动,相变,传热和细胞变形在一个统一的LB平台中,我们能够提供更好地了解泡沫

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号