...
首页> 外文期刊>Physical review, E >Interaction of a planar reacting shock wave with an isotropic turbulent vorticity field
【24h】

Interaction of a planar reacting shock wave with an isotropic turbulent vorticity field

机译:平面反应冲击波与各向同性湍流涡流场的相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

Linear interaction analysis (LIA) is employed to investigate the interaction of reactive and nonreactive shock waves with isotropic vortical turbulence. The analysis is carried out, through Laplace-transform technique, accounting for long-time effects of vortical disturbances on the burnt-gas flow in the fast-reaction limit, where the reaction-region thickness is significantly small in comparison with the most representative turbulent length scales. Results provided by the opposite slow-reaction limit are also recollected. The reactive case is here restricted to situations where the overdriven detonation front does not exhibit self-induced oscillations nor inherent instabilities. The interaction of the planar detonation with a monochromatic pattern of perturbations is addressed first, and then a Fourier superposition for three-dimensional isotropic turbulent fields is employed to provide integral formulas for the amplification of the kinetic energy, enstrophy, and anisotropy downstream. Transitory evolution is also provided for single-frequency disturbances. In addition, further effects associated to the reaction rate, which have not been included in LIA, are studied through direct numerical simulations. The numerical computations, based on WENO-BO_4-type scheme, provide spatial profiles of the turbulent structures downstream for four different conditions that include nonreacting shock waves, unstable reacting shock (sufficiently high activation energy), and stable reacting shocks for different detonation thicknesses. Effects of the propagation Mach number, chemical heat release, and burn rate are analyzed.
机译:采用线性相互作用分析(LIA)来研究具有各向同性涡旋湍流的反应性和非反应冲击波的相互作用。通过Laplace-Transform技术进行分析,占快速反应极限中涡旋扰动对燃烧气流上的涡流扰动的长期影响,与最具代表性湍流相比,反应区厚度明显小。长度尺度。还回顾了相反的慢反应极限提供的结果。反应性壳体在这里限于过脱落的爆炸前面没有表现出自引起的振荡和固有的不稳定性的情况。首先解决了平面爆射与单色模式的相互作用是首先解决的,然后采用三维各向同性湍流场的傅里叶叠加来提供用于扩增动能,敌对和下游各向异性的整体式。还提供了短暂的进化用于单频干扰。此外,通过直接数值模拟研究了与LIA中未包含的反应速率相关的进一步效果。基于Weno-Bo_4型方案的数值计算提供了四种不同条件下游的湍流结构的空间轮廓,其包括不反应冲击波,不稳定的反应冲击(足够高的激活能量),以及用于不同爆炸厚度的稳定反应冲击。分析了传播马赫数,化学热释放和烧伤率的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号