...
首页> 外文期刊>Physical review, E >Eigenstate entanglement between quantum chaotic subsystems: Universal transitions and power laws in the entanglement spectrum
【24h】

Eigenstate entanglement between quantum chaotic subsystems: Universal transitions and power laws in the entanglement spectrum

机译:Quantum Chaotic Subsystems之间的特征纠缠:纠缠谱中的普遍转变和权力法

获取原文
获取原文并翻译 | 示例
           

摘要

We derive universal entanglement entropy and Schmidt eigenvalue behaviors for the eigenstates of two quantum chaotic systems coupled with a weak interaction. The progression from a lack of entanglement in the noninteracting limit to the entanglement expected of fully randomized states in the opposite limit is governed by the single scaling transition parameter Λ. The behaviors apply equally well to few- and many-body systems, e.g., interacting particles in quantum dots, spin chains, coupled quantum maps, and Floquet systems, as long as their subsystems are quantum chaotic and not localized in some manner. To calculate the generalized moments of the Schmidt eigenvalues in the perturbative regime, a regularized theory is applied, whose leading-order behaviors depend on √Λ. The marginal case of the 1/2 moment, which is related to the distance to the closest maximally entangled state, is an exception having a √Λ ln Λ leading order and a logarithmic dependence on subsystem size. A recursive embedding of the regularized perturbation theory gives a simple exponential behavior for the von Neumann entropy and the Havrda-Charvát-Tsallis entropies for increasing interaction strength, demonstrating a universal transition to nearly maximal entanglement. Moreover, the full probability densities of the Schmidt eigenvalues, i.e., the entanglement spectrum, show a transition from power laws and Lévy distribution in the weakly interacting regime to random matrix results for the strongly interacting regime. The predicted behaviors are tested on a pair of weakly interacting kicked rotors, which follow the universal behaviors extremely well.
机译:我们推出了与弱相互作用相结合的两个量子混沌系统的特征突出的通用纠缠熵和施密特特征值行为。在相反限制中缺乏对非交互限制的缠结缠结的速度的进展由单缩放转换参数λ控制完全随机状态。这些行为同样适用于很少和多体系统,例如,数量,旋转链,耦合量子图和浮子系统中的相互作用粒子,只要它们的子系统是量子混乱而不是以某种方式定位的。为了计算扰动制度中的施密特特征值的广义时刻,应用了正则化理论,其领先的行为依赖于√λ。 1/2时刻的边缘情况,与最近纠缠状态最近的距离有关,是具有√λlnλ的前导顺序和对子系统尺寸的对数依赖性的例外。正规化扰动理论的递归嵌入为von neumann熵和havrda-charvát-tsallis熵提供了一个简单的指数行为,用于增加相互作用强度,展示普遍过渡到几乎最大的缠结。此外,Schmidt特征值的完全概率密度,即纠缠频谱,显示在弱互动制度中的动力法和levy分布的转变为随机矩阵结果,对强烈相互作用的制度。预测的行为在一对弱相互作用的踢的转子上测试,这沿着普遍行为极好地遵循。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号