首页> 外文期刊>Physical biology >Calcium oscillations in wounded fibroblast monolayers are spatially regulated through substrate mechanics
【24h】

Calcium oscillations in wounded fibroblast monolayers are spatially regulated through substrate mechanics

机译:受伤的成纤维细胞单层中的钙振荡通过基材力学在空间上调节

获取原文
获取原文并翻译 | 示例
           

摘要

The maintenance of tissue integrity is essential for the life of multicellular organisms. Healing of a skin wound is a paradigm for how various cell types localize and repair tissue perturbations in an orchestrated fashion. To investigate biophysical mechanisms associated with wound localization, we focus on a model system consisting of a fibroblast monolayer on an elastic substrate. We find that the creation of an edge in the monolayer causes cytosolic calcium oscillations throughout the monolayer. The oscillation frequency increases with cell density, which shows that wound-induced calcium oscillations occur collectively. Inhibition of myosin II reduces the number of oscillating cells, demonstrating a coupling between actomyosin activity and calcium response. The spatial distribution of oscillating cells depends on the stiffness of the substrate. For soft substrates with a Young's modulus E similar to 360 Pa, oscillations occur on average within 0.2 mm distance from the wound edge. Increasing substrate stiffness leads to an average localization of oscillations away from the edge (up to similar to 0.6 mm). In addition, we use traction force microscopy to determine stresses between cells and substrate. We find that an increase of substrate rigidity leads to a higher traction magnitude. For E < similar to 2 kPa, the traction magnitude is strongly concentrated at the monolayer edge, while for E > similar to 8 kPa, traction magnitude is on average almost uniform beneath the monolayer. Thus, the spatial occurrence of calcium oscillations correlates with the cell-substrate traction. Overall, the experiments with fibroblasts demonstrate a collective, chemomechanical localization mechanism at the edge of a wound with a potential physiological role.
机译:组织完整性的维持对于多细胞生物的寿命是必不可少的。皮肤伤口的愈合是各种细胞类型如何以策划的方式定位和修复组织扰动的范例。为了研究与伤口定位相关的生物物理机制,我们专注于由弹性基板上的成纤维细胞单层组成的模型系统。我们发现,单层中的边缘的创建导致整个单层细胞溶血性钙振荡。振荡频率随细胞密度而增加,这表明卷绕诱导的钙振荡共同发生。抑制肌霉素II减少了振荡细胞的数量,证明了肌动素活性和钙应答之间的偶联。振荡电池的空间分布取决于基材的刚度。对于具有类似于360Pa的杨氏模量E的软基板,振荡平均在距伤口边缘的距离0.2毫米之内。增加的基板刚度导致振荡远离边缘的平均定位(直到类似于0.6mm)。此外,我们使用牵引力显微镜检查细胞和衬底之间的应力。我们发现基板刚度的增加导致更高的牵引幅度。对于E <类似于2kPa,牵引幅度在单层边缘处强烈集中,而对于类似于8kPa,牵引幅度平均在单层下方几乎均匀。因此,钙振荡的空间发生与细胞衬底牵引相关。总体而言,与成纤维细胞的实验在伤口的边缘上展示了具有潜在生理作用的集体,化学力学定位机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号