...
首页> 外文期刊>Philosophical transactions of the Royal Society. Mathematical, physical, and engineering sciences >When crust comes of age: on the chemical evolution of Archaean, felsic continental crust by crustal drip tectonics
【24h】

When crust comes of age: on the chemical evolution of Archaean, felsic continental crust by crustal drip tectonics

机译:当地壳患有年龄时:在面包般的滴眼构造的北古典的化学演变

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The secular evolution of the Earth's crust is marked by a profound change in average crustal chemistry between 3.2 and 2.5 Ga. A key marker for this change is the transition from Archaean sodic granitoid intrusions of the tonalite-trondhjemite- granodiorite (TTG) series to potassic (K) granitic suites, akin (but not identical) to I-type granites that today are associated with subduction zones. It remains poorly constrained as to how and why this change was initiated and if it holds clues about the geodynamic transition from a pre-plate tectonic mode, often referred to as stagnant lid, to mobile plate tectonics. Here, we combine a series of proposed mechanisms for Archaean crustal geodynamics in a single model to explain the observed change in granitoid chemistry. Numeric modelling indicates that upper mantle convection drives crustal flow and subsidence, leading to profound diversity in lithospheric thickness with thin versus thick protoplates. When convecting asthenospheric mantle interacts with lower lithosphere, scattered crustal drips are created. Under increasing P-T conditions, partial melting of hydrated meta-basalt within these drips produces felsic melts that intrude the overlying crust to form TTG. Dome structures, in which these melts can be preserved, are a positive diapiric expression of these negative drips. Transitional TTG with elevated K mark a second evolutionary stage, and are blends of subsided and remelted older TTG forming K-rich melts and new TTG melts. Ascending TTG-derived melts from asymmetric drips interact with the asthenospheric mantle to form hot, high-Mg sanukitoid. These melts are small in volume, predominantly underplated, and their heat triggered melting of lower crustal successions mm to form higher-K granites. Importantly, this evolution operates as a disseminated process in mmspace and time over hundreds of millions of years (greater than 200 Ma) in all cratons. This focused ageing of the crust implies that compiled geochemical d
机译:地壳的世俗演变是在3.2和2.5Ga之间的平均地壳化学的深刻变化。这种变化的关键标记是从铜矿 - Trondhjemite- granodiorite(TTG)系列的拟亚碘菌侵入侵入到Potassic (k)花岗岩套件,Akin(但不相同)到今天与俯冲区域相关联的I型花岗岩。它仍然受到了解如何以及为何启动这种改变以及从平板上的地形构造模式的线索,通常被称为停滞盖子,到移动板构造的线索。在这里,我们将一系列提议机制组合在单一模型中的考古地质动力学中的一系列建议机制,以解释所观察到的花岗岩化学变化。数字建模表明上部地幔对流驱动出壳流量和沉降,导致岩石厚度的深刻多样性,具有薄​​与厚的原子平板。当将哮喘的壁板与较低的岩石圈相互作用时,产生散射的地壳滴落。在增加P-T条件下,这些滴落内的水合荟萃玄武岩的部分熔化产生了血液熔体,其侵入覆盖的外壳形成TTG。圆顶结构,其中可以保留这些熔体,是这些负滴水的阳性浸润表达。过渡性TTG具有升高的K标记第二进化阶段,并且是消退和重新熔断的较旧TTG的混合物,形成富有的K-熔体和新的TTG熔体。从不对称滴度升高的TTG衍生的熔体与哮喘的壁龛相互作用,形成热,高镁盐。这些熔体的体积小,主要填充,它们的热触发较低的地壳连续毫米毫米以形成高k个花岗岩。重要的是,这种演变作为MMSPACE的传播过程,在所有Cratons中的数十亿多年(大于200 mA)。这种聚焦老化的地壳意味着编译的地球化学D

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号