...
首页> 外文期刊>Pattern Recognition: The Journal of the Pattern Recognition Society >Deep Convolutional Neural Networks for mental load classification based on EEG data
【24h】

Deep Convolutional Neural Networks for mental load classification based on EEG data

机译:基于EEG数据的心理负荷分类深卷积神经网络

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Electroencephalograph (EEG), the representation of the brain's electrical activity, is a widely used measure of brain activities such as working memory during cognitive tasks. Varying in complexity of cognitive tasks, mental load results in different EEG recordings. Classification of mental load is one of core issues in studies on working memory. Various machine learning methods have been introduced into this area, achieving competitive performance. Inspired by the recent breakthrough via deep recurrent convolutional neural networks (CNNs) on classifying mental load, we propose improved CNNs methods for this task. Specifically, our frameworks contain both single-model and double-model methods. With the help of our models, spatial, spectral, and temporal information of EEG data is taken into consideration. Meanwhile, a novel fusion strategy for utilizing different networks is introduced in this work. The proposed methods have been compared with state-of-the-art ones on the same EEG database. The comparison results show that both our single-model method and double-model method can achieve comparable or even better performance than the well-performed deep recurrent CNNs. Furthermore, our proposed CNNs models contain less parameters than state-of-the-art ones, making it be more competitive in further practical application. (C) 2017 Elsevier Ltd. All rights reserved.
机译:脑电图(EEG),大脑电活动的代表性是一种广泛使用的脑活动量,例如在认知任务期间的工作记忆。在认知任务的复杂性不同,心理负荷导致不同的EEG录音。心理负荷的分类是工作记忆研究中的核心问题之一。已经引入了各种机器学习方法,实现了竞争性能。灵感来自最近通过深度经常性卷积神经网络(CNNS)在分类心理负荷上的突破,我们提出了改进的CNNS方法来实现这项任务。具体来说,我们的框架包含单模和双模型方法。在我们的模型的帮助下,考虑了EEG数据的空间,光谱和时间信息。同时,在这项工作中引入了一种利用不同网络的新型融合策略。所提出的方法已与相同的EEG数据库上的最先进的方法进行了比较。比较结果表明,我们的单模型方法和双模型方法都可以达到比良好的深度复发CNN达到可比或甚至更好的性能。此外,我们所提出的CNNS模型包含比最先进的参数更少,使其在进一步的实际应用中更具竞争力。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号