...
首页> 外文期刊>Pain. >Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics
【24h】

Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics

机译:完全植入,无电池无线光电器件,用于脊柱光学机构

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The advent of optogenetic tools has allowed unprecedented insights into the organization of neuronal networks. Although recently developed technologies have enabled implementation of optogenetics for studies of brain function in freely moving, untethered animals, wireless powering and device durability pose challenges in studies of spinal cord circuits where dynamic, multidimensional motions against hard and soft surrounding tissues can lead to device degradation. We demonstrate here a fully implantable optoelectronic device powered by near-field wireless communication technology, with a thin and flexible open architecture that provides excellent mechanical durability, robust sealing against biofluid penetration and fidelity in wireless activation, thereby allowing for long-term optical stimulation of the spinal cord without constraint on the natural behaviors of the animals. The system consists of a double-layer, rectangular-shaped magnetic coil antenna connected to a microscale inorganic light-emitting diode (m-ILED) on a thin, flexible probe that can be implanted just above the dura of the mouse spinal cord for effective stimulation of light-sensitive proteins expressed in neurons in the dorsal horn. Wireless optogenetic activation of TRPV1-ChR2 afferents with spinal m-ILEDs causes nocifensive behaviors and robust real-time place aversion with sustained operation in animals over periods of several weeks to months. The relatively low-cost electronics required for control of the systems, together with the biocompatibility and robust operation of these devices will allow broad application of optogenetics in future studies of spinal circuits, as well as various peripheral targets, in awake, freely moving and untethered animals, where existing approaches have limited utility.
机译:对神经元网络的组织允许前所未有的洞察力出现。虽然最近开发的技术使实现了对脑功能研究的光源,但在自由移动,无线动力和装置耐用性对脊髓电路的研究中造成挑战,虽然具有动态,用于硬质围绕组织的多维运动可以导致装置降级。这里我们展示了由近场无线通信技术提供的完全可植入的光电器件,具有薄而柔韧的开放式架构,可提供出色的机械耐久性,鲁棒密封对无线激活的生物流体渗透和保真度,从而允许长期光学刺激脊髓没有对动物的自然行为的约束。该系统由双层,矩形磁线圈天线组成,该磁线圈天线连接到微观的无机发光二极管(M-ILED)上,在薄的柔性探针上,可以刚刚植入小鼠脊髓的硬脑上方,以便有效刺激背角中神经元中表达的光敏蛋白质。 TRPV1-CHR2传入的无线致敏激活脊柱M-ILEDS引起的,使得在几周至数月内的动物中具有持续运行的持续运行和稳健的实时位置厌恶。控制系统所需的相对低成本的电子产品,以及这些器件的生物相容性和鲁棒操作将允许广泛地应用脊柱电路的未来研究,以及各种外围目标,可自由地移动和不受影响动物,现有方法有限的效用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号