首页> 外文期刊>Systematic Biology >A General Method for Simultaneously Accounting for Phylogenetic and Species Sampling Uncertainty via Rubin's Rules in Comparative Analysis
【24h】

A General Method for Simultaneously Accounting for Phylogenetic and Species Sampling Uncertainty via Rubin's Rules in Comparative Analysis

机译:同时核对系统发育和物种在比较分析中的规则中对系统发育和物种的综合方法

获取原文
获取原文并翻译 | 示例
       

摘要

Phylogenetic comparative methods (PCMs), especially ones based on linear models, have played a central role in understanding species' trait evolution. These methods, however, usually assume that phylogenetic trees are known without error or uncertainty, but this assumption is most likely incorrect. So far, Markov chain Monte Carlo (MCMC)-based Bayesian methods have mainly been deployed to account for such "phylogenetic uncertainty" in PCMs. Herein, we propose an approach with which phylogenetic uncertainty is incorporated in a simple, readily implementable and reliable manner. Our approach uses Rubin's rules, which are an integral part of a standard multiple imputation procedure, often employed to recovermissing data. We see true phylogenetic trees as missing data under this approach. Further, unmeasured species in comparative data (i.e., missing trait data) can be seen as another source of uncertainty in PCMs because arbitrary sampling of species in a given taxon or "species sampling uncertainty" can affect estimation in PCMs. Using two simulation studies, we showour method can account for phylogenetic uncertainty under many different scenarios (e.g., uncertainty in topology and branch lengths) and, at the same time, it can handle missing trait data (i.e., species sampling uncertainty). A unique property of the multiple imputation procedure is that an index, named "relative efficiency," could be used to quantify the number of trees required for incorporating phylogenetic uncertainty. Thus, by using the relative efficiency, we show the required tree number is surprisingly small (similar to 50 trees). However, the most notable advantage of our method is that it could be combined seamlessly with PCMs that utilize multiple imputation to handle simultaneously phylogenetic uncertainty (i.e., missing true trees) and species sampling uncertainty (i.e., missing trait data) in PCMs.
机译:系统发育比较方法(PCM),特别是基于线性模型的比较方法在理解物种的特质演变中发挥了核心作用。然而,这些方法通常假设没有误差或不确定性的已知系统发育树,但这种假设很可能是不正确的。到目前为止,马尔可夫链蒙特卡罗(MCMC)的基于贝叶斯方法主要部署到PCM中的“系统发育不确定性”。在此,我们提出了一种方法,其中系统发育不确定度以简单,容易可实现和可靠的方式掺入。我们的方法使用Rubin的规则,这些规则是标准多重估算过程的一个组成部分,通常用于RecoverMissing数据。在这种方法下,我们将真实的系统发育树视为缺失的数据。此外,在比较数据(即,缺少特质数据)中的未测量物种可以被视为PCMS中的另一个不确定性来源,因为在给定的分类群或“物种采样不确定性”中的种类采样可以影响PCMS中的估计。使用两种模拟研究,我们展示方法可以解释许多不同场景下的系统发育不确定性(例如,拓扑和分支长度的不确定性),并且同时,它可以处理缺失的特征数据(即,物种采样不确定性)。多个归纳程序的独特性质是指数,名为“相对效率”的指标可用于量化包含系统发育不确定性所需的树木数量。因此,通过使用相对效率,我们显示所需的树数令人惊讶的小(类似于50棵树)。然而,我们的方法中最值得注意的优势是它可以与使用多个归发的PCMS无缝地合并,以同时处理PCM中的同时的系统发育不确定性(即,缺少真实的树木)和物种采样不确定性(即,缺少特质数据)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号