...
首页> 外文期刊>Superconductor Science & Technology >In situ hydrostatic pressure induced improvement of critical current density and suppression of magnetic relaxation in Y(Dy-0.5)Ba2Cu3O7-(delta) coated conductors
【24h】

In situ hydrostatic pressure induced improvement of critical current density and suppression of magnetic relaxation in Y(Dy-0.5)Ba2Cu3O7-(delta) coated conductors

机译:原位静水压压力诱导y(Dy-0.5)Ba2Cu3O7-(Delta)涂覆的导体中的临界电流密度提高和抑制磁性弛豫

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We report on the effect of in situ hydrostatic pressure on the enhancement of the in-magneticfield critical current density parallel to the crystallographic c-axis and vortex pinning in epitaxial Y(Dy-0.5)Ba2Cu3O7-delta coated conductors prepared by metal organic deposition. Our results show that in situ hydrostatic pressure greatly enhances the critical current density at high fields and high temperatures. At 80 K and 5 T we observe a ten-fold increase in the critical current density under the pressure of 1.2 GPa, and the irreversibility line is shifted to higher fields without changing the critical temperature. The normalized magnetic relaxation rate shows that vortex creep rates are strongly suppressed due to applied pressure, and the pinning energy is significantly increased based on the collective creep theory. After releasing the pressure, we recover the original superconducting properties. Therefore, we speculate that the in situ hydrostatic pressure exerted on the coated conductor enhances the pinning of existing extended defects. This is totally different from what has been observed in REBa2Cu3O7-delta melt-textured crystals, where the effect of pressure generates point-like defects.
机译:我们报告了原位静压压力对通过金属有机沉积制备的外延Y(DY-0.5)Ba2Cu3O7-Delta涂覆导体的结晶C轴和涡旋钉扎的磁场临界电流密度增强的影响。我们的研究结果表明,原位静压压力大大提高了高领域和高温下的临界电流密度。在80 k和5t中,我们观察在1.2 gpa的压力下的临界电流密度的十倍增加,不可逆线被移位到更高的区域而不改变临界温度。归一化磁性弛豫速率表明,由于施加压力,涡流蠕变速率受到强烈抑制,并且基于集体蠕变理论显着增加钉扎能。在释放压力之后,我们恢复原始超导特性。因此,我们推测施加在涂覆导体上的原位静压压力增强了现有的延长缺陷的钉染。这与REBA2CU3O7-DELTA熔体纹理晶体中已观察到的完全不同,其中压力的影响产生点状缺陷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号