首页> 外文期刊>Superconductor Science & Technology >Controlling Cu-Sn mixing so as to enable higher critical current densities in RRP (R) Nb3Sn wires
【24h】

Controlling Cu-Sn mixing so as to enable higher critical current densities in RRP (R) Nb3Sn wires

机译:控制Cu-Sn混合以便在RRP(R)NB3SN线中实现更高的临界电流密度

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Dipole magnets for the proposed Future Circular Collider (FCC) demand specifications significantly beyond the limits of all existing Nb3Sn wires, in particular a critical current density (J(c)) of more than 1500 A mm(-2) at 16 T and 4.2 K with an effective filament diameter (D-eff) of less than 20 mu m. The restacked-rod-process (RRP (R)) is the technology closest to meeting these demands, with a J(c) (16 T) of up to 1400 A mm-2, residual resistivity ratio 100, for a sub element size D-s of 58 mu m (which in RRP (R) wires is essentially the same as D-eff). An important present limitation of RRP (R) is that reducing the sub-element size degrades J(c) to as low as 900 A mm(-2) at 16 T for D-s = 35 mu m. To gain an understanding of the sources of this J(c) degradation, we have made a detailed study of the phase evolution during the Cu-Sn 'mixing' stages of the wire heat treatment that occur prior to Nb3Sn formation. Using extensive microstructural quantification, we have identified the critical role that the Sn-Nb-Cu ternary phase (Nausite) can play. The Nausite forms as a well-defined ring between the Sn source and the Cu/Nb filament pack, and acts as an osmotic membrane in the 300 degrees C-400 degrees C range - greatly inhibiting Sn diffusion into the Cu/Nb filament pack while supporting a strong Cu counter-diffusion from the filament pack into the Sn core. This converts the Sn core into a mixture of the low melting point (408 degrees C) eta phase (Cu6Sn5) and the more desirable epsilon phase (Cu3Sn), which decomposes at 676 degrees C. After the mixing stages, when heated above 408 degrees C towards the Nb3Sn reaction, any residual eta liquefies to form additional irregular Nausite on the inside of the membrane. All Nausite decomposes into NbSn2 on further heating, and ultimately transforms into coarse-grain (and often disconnected) Nb3Sn which has little contribution to current transport. Understanding this critical Nausite reaction pathway has allowed us to s
机译:用于所提出的未来圆形撞机(FCC)需求规格的偶极磁体显着超出了所有现有NB3SN线的极限,特别是16吨和4.2的临界电流密度(J(C))超过1500amm(-2) K具有小于20μm的有效丝直径(d-exf)的k。恢复杆工艺(RRP(R))是最接近满足这些需求的技术,J(C)(16T)高达1400毫米Mm-2,残余电阻率比>如图100所示,对于58μm的副元素尺寸D-S(在RRP(R)线中基本上与D-EFF基本相同)。 RRP(R)的重要目的限制是将子元素尺寸降低为D-S =35μm的16 t处的j(c)至900a mm(-2)。为了了解该J(c)降解的来源,我们已经详细研究了在NB3SN形成之前发生的线热处理的Cu-Sn'混合'阶段的相位演化。使用广泛的微观结构量化,我们确定了SN-NB-Cu三元相(Nausite)可以发挥的关键作用。作为Sn源和Cu / Nb长丝包之间的明确狭窄的环,并且在300摄氏度中的渗透膜中作用为渗透膜的结构 - 大大抑制Sn扩散到Cu / Nb灯丝包中支持从丝包到Sn核心的强Cu反扩散。这将Sn核转化为低熔点(408℃)ETA相(CU6SN5)和更期望的ε-相(CU3SN)的混合物中,其在676℃下分解。在混合阶段之后,在408度以上加热时C朝向NB3SN反应,任何残留的ETA液化物,以在膜内部形成额外的不规则恶毒。所有恶心都在进一步加热上分解成NBSN2,最终变成粗粒(和经常断开)NB3SN,这对电流运输几乎没有贡献。了解这条批判性的邪恶反应途径使我们能够获得

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号