首页> 外文期刊>Superconductor Science & Technology >Effect of the sintering temperature on the microstructure and superconducting properties of MgB2 bulks manufactured by the field assisted sintering technique
【24h】

Effect of the sintering temperature on the microstructure and superconducting properties of MgB2 bulks manufactured by the field assisted sintering technique

机译:烧结温度对现场辅助烧结技术制造的MGB2散装微观结构和超导性能的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Magnesium diboride (MgB2) bulk superconductors may have practical applications as permanent magnets owing to their ability to trap larger fields than conventional ferromagnets and a transition temperature of 39 K that make them attractive for use in cryogen-free systems. Unlike the cuprate high temperature superconductors, grain boundaries in MgB2 act as pinning sites not weak links, and so show good current carrying ability in polycrystalline samples. This enables the materials to be processed using standard ceramic processing methods which are scalable to large diameters and mass production. The maximum trapped field in bulk superconductors scales with the critical current density (J(c)) of the material as well as the radius of the sample. To obtain the highest possible J(c) values in MgB2 at high fields requires the bulk materials to be fully dense but fine-grained material, and possibly with a nano-scale distribution of non-superconducting impurity particles to further enhance pinning. Field assisted sintering technology (FAST) is a rapid process for obtaining dense ceramics from materials like MgB2 which are difficult to sinter with conventional pressure-less techniques. Rapid heat treatments are attractive both from a manufacturing point of view and because the total time that the sample is held at high temperature is short, limiting grain coarsening. In this paper, we report a systematic study of the influence of processing temperature on microstructure and superconducting properties of MgB2 bulks manufactured using FAST. We conclude that processing temperatures above 1000 degrees C are required to obtain materials that have sufficiently high electrical connectivity to generate large magnetic moments. However, the intrinsic (intragrain) J(c) values in MgB2 are better in the samples processed at 900 degrees C owing to their finer scale microstructures and the MgB2 lattice being more defective.
机译:镁二硼(MGB2)散装超导体可以具有作为永磁体的实际应用,由于它们捕获较大的磁场的能力而不是常规铁磁体和39 k的过渡温度,使它们具有吸引力的无低温系统。与铜酸铜高温超导体不同,MGB2中的晶界作为钉扎位点不薄弱,因此在多晶样品中显示出良好的电流携带能力。这使得能够使用标准陶瓷加工方法来处理材料,该方法可扩展到大直径和批量生产。散装超导体中的最大被捕获的场在材料的临界电流密度(j(c))和样品的半径上缩小。为了在高领域获得MGB2中的最高可能的J(C)值,需要散装材料是完全致密但细粒的材料,并且可能具有非超导杂质颗粒的纳米级分布,以进一步增强钉扎。现场辅助烧结技术(FAST)是一种从诸如MGB2等材料获得致密陶瓷的快速方法,这难以烧结较多的含压技术。快速热处理是从制造的角度的吸引力,并且由于样品在高温下保持的总时间短,限制晶粒粗化。在本文中,我们报告了对使用快速制造的MGB2块的微观结构和超导性能的系统研究。我们得出结论,需要高于1000摄氏度的处理温度来获得具有足够高的电连接以产生大磁矩的材料。然而,由于它们更精细的微结构和MGB2格子更具缺陷,MGB2中的内在(腔内)J(c)值在900摄氏度下加工的样品中更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号