首页> 外文期刊>Strain >The incremental Virtual Fields Method and prestretching method applied to rubbers under uniaxial medium-strain-rate loading
【24h】

The incremental Virtual Fields Method and prestretching method applied to rubbers under uniaxial medium-strain-rate loading

机译:单轴中等应变率加载下橡胶的增量虚拟字段方法和预胶种方法

获取原文
获取原文并翻译 | 示例
           

摘要

Conventional dynamic experiments on rubbers have several limitations including low signal-to-noise ratio and a long time period during which the specimen is not in static equilibrium, which causes difficulties separating constitutive material behaviour from specimen response. In order to overcome these limitations, we build on previous research in which the Virtual Fields Method (VFM) is applied to dynamic tensile experiments. A previous study has demonstrated that the VFM can be used to identify the material parameters of a hyperelastic model for a given rubber based on optical measurements of wave propagation in the rubber, eliminating the need for force measurements by instead using acceleration fields as a virtual load cell. In order for us to successfully characterise the strain hardening in the material, large deformations are required, and these were achieved by applying static preloads to the specimen before the dynamic loading. In order for us to then apply the VFM, measurements of the static force, or strain, or both, are required. This paper explores different methods for applying the VFM, in particular, comparing the use of a static force measurement, as in the previous research, to methods that only require strain fields in order to apply the incremental equation of motion. Finite element method simulations were conducted to compare the identification sensitivity to experimental error sources between the 2 VFM implementations; the experimental data used in the previous studies were then applied to the incremental VFM. A further experimental comparison is provided between constitutive parameters obtained in tensile experiments using the VFM and compressive measurements from a modified split Hopkinson bar technique equipped with a piezoelectric force transducer. Finally, there is a discussion of the effects of preloading and relaxation in the material.
机译:橡胶上的常规动态实验具有几个限制,包括低信噪比和长时间,在此期间,样本不在静态平衡中,这导致将组成型材料行为与样本反应分离的困难。为了克服这些限制,我们建立了以前的研究,其中将虚拟字段方法(VFM)应用于动态拉伸实验。先前的研究表明,VFM可用于基于橡胶中波传播的光学测量来识别给定橡胶的高速塑料模型的材料参数,而是通过作为虚拟负载的加速度来消除对力测量的需要细胞。为了让我们成功表征材料中的应变硬化,需要大的变形,并且通过将静电预载荷施加到动态载荷之前,通过将静态预载荷施加到样本来实现。为了让我们施加VFM,需要测量静力,或菌株或两者。本文探讨了应用VFM的不同方法,特别是比较使用静力测量的使用,如在先前的研究中,以便仅需要应变场的方法来应用运动的增量方程。进行有限元方法模拟,以将识别敏感性与2 VFM实现之间的实验误差源进行比较;然后将先前研究中使用的实验数据应用于增量VFM。在使用具有压电力换能器的改进的分裂霍普金森棒技术中的拉伸实验中获得的构成参数之间提供了进一步的实验比较。最后,讨论了材料中预加载和放松的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号