首页> 外文期刊>Steel in Translation >Surface Phenomena in the Smelting Bath of an Oxygen Converter
【24h】

Surface Phenomena in the Smelting Bath of an Oxygen Converter

机译:氧气转换器冶炼浴中的表面现象

获取原文
获取原文并翻译 | 示例
           

摘要

The oxygen-converter production of steel is determined by processes in the converter's reaction zone, which consists of primary and secondary regions. The primary region is the crater formed by the collision of a supersonic gas jet with the molten-metal surface. It is filled with metal droplets (diameter 0.1-2 mm). The surrounding secondary region consists of melt with an enormous quantity of gas bubbles (diameter 0.2- 4 mm). The total surface area of the droplets and bubbles is four orders of magnitude greater than the surface of the quiescent melt. That indicates the important role of processes at phase boundaries in steel production. The structure of the reaction zone and the corresponding temperature distribution are studied by hot simulation, when the molten metal is blown by oxygen in a transparent quartz crucible. The transparent walls permit photographic and video recording of the processes in the crucible. Besides the temperature distribution, the hydrodynamics of the bath may be studied directly in the injection zone. The most unexpected result of hot simulation is the motion of the bubbles in the secondary region. They move normal to the crater surface. In other words, their motion is almost horizontal, rather than vertical, as in cold simulation in water. This may be attributed to nonuniformity of the melt's surface tension, resulting in motion of the bubbles toward higher temperatures. In liquid with a temperature gradient, the surface tension will be different ahead of and behind the bubbles. The forces pushing the bubbles from behind are greater than the forces at the front. Accordingly, they move toward the region of lower surface tension. The nonuniformity of the surface tension is due to the temperature gradient (up to 1200°C within the secondary region) and the change in concentration of the melt components, especially oxygen. The surface tension of the ferrocarbon melt changes in a complex manner with increase in temperature. The surface tension rises on heating to 1550°C, but begins to decrease beyond 1550-1600°C. With decrease in carbon content in the melt, the maximum value of the surface tension increases. The motion of gas bubbles and other phases toward lower surface tension begins at the 1550°C isotherm, which is therefore the external boundary of the secondary region, separating it from the remainder of the bath. Within this boundary, the resultant vector of the surface forces pushes the gas bubbles and slag particles, together with the molten metal, horizontally toward the crater, at increasing speed. This determines the hydrodynamics of the smelting bath and the associated redistribution of oxygen over different parts of the bath and hence the refining process as a whole.
机译:钢的氧气转换器生产由转换器的反应区中的工艺决定,该过程由初级和二次区域组成。主要区域是通过用熔融金属表面的超声波气体射流的碰撞形成的火山口。它充满了金属液滴(直径0.1-2 mm)。周围的二级区域由熔体组成,具有巨大的气泡(直径0.2-4mm)。液滴和气泡的总表面积比静态熔体表面大的四个数量级。这表明过程在钢铁的相界处的重要作用。通过热模拟研究了反应区和相应的温度分布的结构,当熔融金属在透明石英坩埚中吹出氧气时。透明墙允许坩埚中的过程的摄影和视频记录。除温度分布外,浴的流体动力学可以直接在注射区中进行。热仿真的最意想不到的结果是次要区域中的气泡的运动。它们向火山口垂直移动。换句话说,它们的运动几乎是水平的,而不是垂直,如在水中的冷模拟中。这可能归因于熔体表面张力的不均匀性,导致气泡的运动朝向更高的温度。在具有温度梯度的液体中,表面张力将在气泡和后面的外面不同。从后面推动气泡的力大于前面的力。因此,它们朝向下表面张力的区域移动。表面张力的不均匀性是由于温度梯度(在次级区域内最多1200℃)和熔体组分的浓度变化,尤其是氧气。铁圆环丝熔体的表面张力以复杂的方式变化,随着温度的增加而变化。表面张力在加热至1550°C时升高,但开始减少超过1550-1600℃。随着熔体中的碳含量的降低,表面张力的最大值增加。气泡和其他相位朝向下表面张力的运动开始于1550℃的等温线,因此是次级区域的外边界,将其从浴的其余部分分离。在该边界内,表面力的所得载体以升高的速度将气泡和熔渣颗粒与熔喷艇水平水平推动。这决定了冶炼浴的流体动力学以及浴缸不同部位的氧气相关再分布,因此整体的精炼过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号