...
首页> 外文期刊>Solid state ionics >Spatial distribution of oxygen chemical potential under potential gradients and performance of solid oxide fuel cells with Ce0.9Gd0.1O2-delta electrolyte
【24h】

Spatial distribution of oxygen chemical potential under potential gradients and performance of solid oxide fuel cells with Ce0.9Gd0.1O2-delta electrolyte

机译:具有Ce0.9GD0.1O2-Delta电解质的潜在梯度和固体氧化物燃料电池性能下氧气化学潜力的空间分布

获取原文
获取原文并翻译 | 示例

摘要

In this work, maximum power density as the function of electrolyte thickness of a solid oxide fuel cell (SOFC) with Ce0.9Gd0.1O2-delta (GDC10) electrolyte was calculated by integrating partial conductivities of charge carriers under various DC bias conditions at a fixed oxygen chemical potential gradient at both sides of the electrolyte. Partial conductivities as a function of temperature and oxygen partial pressure (P-O2) were calculated using Hebb-Wagner polarization method and spatial distribution of P-O2 across the electrolyte was calculated based on Choudhury and Patterson's model [1] by considering reversible electrode conditions. At terminal voltages corresponding to SOFC and electrolysis cell operation modes, the oxygen chemical potential gradient at a electronic-stoichiometric point became maximum and minimum to compensate the contribution from electrochemical potential gradient of electron. The current-voltage characteristics in different fuel cell conditions with temperature and thickness dependence were calculated with cathodic and anodic P-O2 of 0.21 and 10(-22) atm, respectively. The theoretical maximum power density increased from 1.26 W.cm(-2) at 500 degrees C to 7.39 W.cm(-2) at 700 degrees C. Similarly, at 500 degrees C, power density increased two fold on reducing electrolyte thickness from 20 mu m to 10 mu m. The implications of these results on the development of GDC10 based SOFC systems was discussed.
机译:在这项工作中,通过将各种直流偏置条件下的电荷载体的部分导电集成在A的情况下,计算作为Ce0.9GD0.1O2-Delta(GDC10)电解质的电解质厚度的最大功率密度作为Ce0.9GD0.1O2-Delta(GDC10)电解质的函数。固定电解质两侧的氧化学潜在梯度。使用HEBB-WAGNEL偏振法计算作为温度和氧分压(P-O2)的函数的局部导电性,并且通过考虑可逆电极条件,基于Choudhury和Patterson的模型[1]计算P-O2穿过电解质的空间分布。在对应于SOFC和电解槽操作模式的末端电压下,电子化学计量点处的氧化学电位梯度变得最大,最小,以补偿电子的电化学电位梯度的贡献。用温度和厚度依赖性的不同燃料电池条件下的电流 - 电压特性分别用0.21和10(-22)ATM的阴极和阳极P-O2计算。理论最大功率密度在700℃下以500摄氏度为500℃至7.39WμCm(-2)的1.26W.cm(-2)增加。类似地,在500摄氏度下,功率密度增加了两倍以降低电解质厚度20亩至10亩。讨论了这些结果对基于GDC10的SOFC系统的发展的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号